From 1 - 10 / 81
  • Under the World Climate Research Programme (WCRP), the Working Group on Cloupled Modelling (WGCM) established the Coupled Model Intercomparison Project (CMIP) as a standard experimental protocol for studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP provides a community-based infrastructure in support of climate model diagnosis, validation, intercomparison, documentation and data access. This framework enables a diverse community of scientists to analyze GCMs in a systematic fashion, a process which serves to facilitate model improvement. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives much of the CMIP data. Part of the CMIP archive constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3), a collection of climate model output from simulations of the past, present and future climate. This unprecedented collection of recent model output is officially known as the "WCRP CMIP3 multi-model dataset". It is meant to serve the Intergovernmental Panel on Climate Change (IPCC)'s Working Group 1, which focuses on the physical climate system -- atmosphere, land surface, ocean and sea ice -- and the choice of variables archived reflects this focus. The Intergovernmental Panel on Climate Change (IPCC) was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science. The research based on this dataset provided much of the new material underlying the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4).

  • This dataset contains output data from a number of models associated with the IPCC Third Assessment Report. This data was processed at the Climate Research Unit at the University of East Anglia. The data extraction was intended for use by the Climate Impacts Community (and was funded by the UK Department of Environment Food and Rural Affairs, Defra). Data from various modelling centres and models: CCCMA, CSIRO, ECHAM4, GFDL99, HADCM3, NIES99.

  • Data used in Climate Change 2001, the Third Assessment Report (TAR) of the United Nations Intergovernmental Panel on Climate Change (IPCC). Simulations of global climate models were run by various climate modelling groups coordinated by the World Climate Research Programme (WCRP) on behalf of the United Nations Intergovernmental Panel on Climate Change (IPCC). Climatology data calculated from global climate model simulations of experiments representative of Special Report on Emission Scenarios (SRES) scenarios: A1F, A1T, A1a, A2a, A2b, A2c, B1a, B2b. The climatologies are 30-year averages. Climate anomalies are expressed relative to the period 1961-1990. The monthly climatology data covers the period from 1961-2100. The climatologies are of global scope and are provided on latitude-longitude grids.

  • Data used in Climate Change 2001, the Third Assessment Report (TAR) of the United Nations Intergovernmental Panel on Climate Change (IPCC). Simulations of global climate models were run by various climate modelling groups coordinated by the World Climate Research Programme (WCRP) on behalf of the United Nations Intergovernmental Panel on Climate Change (IPCC). Climatology data calculated from global climate model simulations of experiments representative of Special Report on Emission Scenarios (SRES) scenarios: A1F, A1T, A1a, A2a, A2b, A2c, B1a, B2b. The climatologies are 30-year averages. Climate anomalies are expressed relative to the period 1961-1990. The monthly climatology data covers the period from 1961-2100. The climatologies are of global scope and are provided on latitude-longitude grids.

  • Data used in Climate Change 2007, the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). Simulations of global climate models were run by various climate modelling groups coordinated by the World Climate Research Programme (WCRP) on behalf of the United Nations Intergovernmental Panel on Climate Change (IPCC). Climatology data calculated from global climate model simulations of experiments representative of Special Report on Emission Scenarios (SRES) scenarios: A1b, A2, B1, the commitment scenario experiment (COMMIT), the twentieth century experiment (20C3M), the pre-industrial control (PICTL) and the idealised experiments 1PCTO2X and 1PCTO4X. The AR4 climatologies are 20-year averages, 30-year averages have also been calculated for comparison with the IPCC Third Assessment Report (TAR). The monthly climatology data covers the period from 1850-2100. The climatologies are of global scope and are provided on latitude-longitude grids.

  • CMIP5 monthly mean climatology fields matching those given in IPCC WG1 AR5 Annex I: Atlas of Global and Regional Climate Projections in Climate Change 2013, the Fifth Assessment Report (AR5) of the United Nations Intergovernmental Panel on Climate Change (IPCC). Climatologies have been calculated for global fields of Specific Humidity, Precipitation, Sea Level Pressure, Temperature, Wind and Downwelling Shortwave Radiation (Stoker et. al., 2013). The CMIP5 climatologies, calculated by the Centre for Environmental Data Analysis (CEDA), match those described in table AI.1 in Stoker et al (2013). Twenty- and thirty-year climatologies and climatological anomalies are calculated for experiments: piControl, 1pctCO2, historical, rcp26, rcp45, rcp60 and rcp85 produced by 39 models from 22 modelling centres. The monthly climatology data covers the period from 1850-2100. The climatologies are of global scope and are provided on latitude-longitude grids.

  • Data for Figure 3.36 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.36 shows observed and simulated life cycle of El Niño and La Niña events. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has four panels. All the data are provided in enso_lifecycle.nc file. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains - Composite time series of the ENSO index for El Niño events - Composite time series of the ENSO index for La Niña events - Mean duration of El Niño events - Mean duration of La Niña events in observations, CMIP5 historical-RCP4.5 and and CMIP6 historical simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - ts_elnino_obs; black curves . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - ts_elnino_cmip5: The ENSO index time series in each ensemble member of CMIP5 models; blue curve and shading - ts_elnino_cmip6: The ENSO index time series in each ensemble member of CMIP6 models; red curve and shading Panel b: - ts_lanina_obs; black curves . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - ts_lanina_cmip5: The ENSO index time series in each ensemble member of CMIP5 models; blue curve and shading - ts_lanina_cmip6: The ENSO index time series in each ensemble member of CMIP6 models; red curve and shading Panel c: - duration_elnino_obs; black vertical lines and numbers in the top right box . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - duration_elnino_cmip5: El Nino duration in each ensemble member of CMIP5 models; blue box-whisker and number in the top right box - duration_elnino_cmip6; El Nino duration in each ensemble member of CMIP6 models; red dots, red box-whisker and number in the top right box . ACCESS-CM2: ens_cmip6 = 1 - 3 . ACCESS-ESM1-5: ens_cmip6 = 4 - 23 . AWI-CM-1-1-MR: ens_cmip6 = 24 - 28 . AWI-ESM-1-1-LR: ens_cmip6 = 29 . BCC-CSM2-MR: ens_cmip6 = 30 - 32 . BCC-ESM1: ens_cmip6 = 33 - 35 . CAMS-CSM1-0: ens_cmip6 = 36-38 . CanESM5-CanOE: ens_cmip6 = 39 - 41 . CanESM5: ens_cmip6 = 42 - 106 . CESM2-FV2: ens_cmip6 = 107 - 109 . CESM2: ens_cmip6 = 110 - 120 . CESM2-WACCM-FV2: ens_cmip6 = 121 - 123 . CESM2-WACCM: ens_cmip6 = 124 - 126 . CIESM: ens_cmip6 = 127 - 129 . CMCC-CM2-HR4: ens_cmip6 = 130 . CMCC-CM2-SR5: ens_cmip6 = 131 . CMCC-ESM2: ens_cmip6 = 132 . CNRM-CM6-1-HR: ens_cmip6 = 133 . CNRM-CM6-1: ens_cmip6 = 134 - 162 . CNRM-ESM2-1: ens_cmip6 = 163 - 172 . E3SM-1-0: ens_cmip6 = 173 - 177 . E3SM-1-1-ECA: ens_cmip6 = 178 . E3SM-1-1: ens_cmip6 = 179 . EC-Earth3-AerChem: ens_cmip6 = 180, 181 . EC-Earth3-CC: ens_cmip6 = 182 . EC-Earth3: ens_cmip6 = 183 - 204 . EC-Earth3-Veg-LR: ens_cmip6 = 205 - 207 . EC-Earth3-Veg: ens_cmip6 = 208 - 215 . FGOALS-f3-L: ens_cmip6 = 216 - 218 . FGOALS-g3: ens_cmip6 = 219 - 224 . FIO-ESM-2-0: ens_cmip6 = 225 - 227 . GFDL-CM4: ens_cmip6 = 228 . GFDL-ESM4: ens_cmip6 = 229 - 231 . GISS-E2-1-G-CC: ens_cmip6 = 232 . GISS-E2-1-G: ens_cmip6 = 233 - 278 . GISS-E2-1-H: ens_cmip6 = 279 - 302 . HadGEM3-GC31-LL: ens_cmip6 = 303 - 306 . HadGEM3-GC31-MM: ens_cmip6 = 307 - 310 . IITM-ESM: ens_cmip6 = 311 . INM-CM4-8: ens_cmip6 = 312 . INM-CM5-0: ens_cmip6 = 313 - 322 . IPSL-CM5A2-INCA: ens_cmip6 = 323 . IPSL-CM6A-LR: ens_cmip6 = 324 - 355 . KACE-1-0-G: ens_cmip6 = 356-358 . KIOST-ESM: ens_cmip6 = 359 . MCM-UA-1-0: ens_cmip6 = 360, 361 . MIROC6: ens_cmip6 = 362 - 411 . MIROC-ES2L: ens_cmip6 = 412 - 421 . MPI-ESM-1-2-HAM: ens_cmip6 = 422 - 424 . MPI-ESM1-2-HR: ens_cmip6 = 425 - 434 . MPI-ESM1-2-LR: ens_cmip6 = 435 -  444 . MRI-ESM2-0: ens_cmip6 = 445 - 450 . NESM3: ens_cmip6 = 451 - 455 . NorCPM1: ens_cmip6 = 456 - 485 . NorESM2-LM: ens_cmip6 = 486 - 488 . NorESM2-MM: ens_cmip6 = 489 - 490 . SAM0-UNICON: ens_cmip6 = 491 . TaiESM1: ens_cmip6 = 492 . UKESM1-0-LL: ens_cmip6 = 493 - 510 Panel d: - duration_lanina_obs; black vertical lines and numbers in the top right box . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - duration_lanina_cmip5; La Nina duration in each ensemble member of CMIP5 models; blue box-whisker and number in the top right box - duration_lanina_cmip6; La Nina duration in each ensemble member of CMIP6 models; red dots, red box-whisker and number in the top right box . ACCESS-CM2: ens_cmip6 = 1 - 3 . ACCESS-ESM1-5: ens_cmip6 = 4 - 23 . AWI-CM-1-1-MR: ens_cmip6 = 24 - 28 . AWI-ESM-1-1-LR: ens_cmip6 = 29 . BCC-CSM2-MR: ens_cmip6 = 30 - 32 . BCC-ESM1: ens_cmip6 = 33 - 35 . CAMS-CSM1-0: ens_cmip6 = 36-38 . CanESM5-CanOE: ens_cmip6 = 39 - 41 . CanESM5: ens_cmip6 = 42 - 106 . CESM2-FV2: ens_cmip6 = 107 - 109 . CESM2: ens_cmip6 = 110 - 120 . CESM2-WACCM-FV2: ens_cmip6 = 121 - 123 . CESM2-WACCM: ens_cmip6 = 124 - 126 . CIESM: ens_cmip6 = 127 - 129 . CMCC-CM2-HR4: ens_cmip6 = 130 . CMCC-CM2-SR5: ens_cmip6 = 131 . CMCC-ESM2: ens_cmip6 = 132 . CNRM-CM6-1-HR: ens_cmip6 = 133 . CNRM-CM6-1: ens_cmip6 = 134 - 162 . CNRM-ESM2-1: ens_cmip6 = 163 - 172 . E3SM-1-0: ens_cmip6 = 173 - 177 . E3SM-1-1-ECA: ens_cmip6 = 178 . E3SM-1-1: ens_cmip6 = 179 . EC-Earth3-AerChem: ens_cmip6 = 180, 181 . EC-Earth3-CC: ens_cmip6 = 182 . EC-Earth3: ens_cmip6 = 183 - 204 . EC-Earth3-Veg-LR: ens_cmip6 = 205 - 207 . EC-Earth3-Veg: ens_cmip6 = 208 - 215 . FGOALS-f3-L: ens_cmip6 = 216 - 218 . FGOALS-g3: ens_cmip6 = 219 - 224 . FIO-ESM-2-0: ens_cmip6 = 225 - 227 . GFDL-CM4: ens_cmip6 = 228 . GFDL-ESM4: ens_cmip6 = 229 - 231 . GISS-E2-1-G-CC: ens_cmip6 = 232 . GISS-E2-1-G: ens_cmip6 = 233 - 278 . GISS-E2-1-H: ens_cmip6 = 279 - 302 . HadGEM3-GC31-LL: ens_cmip6 = 303 - 306 . HadGEM3-GC31-MM: ens_cmip6 = 307 - 310 . IITM-ESM: ens_cmip6 = 311 . INM-CM4-8: ens_cmip6 = 312 . INM-CM5-0: ens_cmip6 = 313 - 322 . IPSL-CM5A2-INCA: ens_cmip6 = 323 . IPSL-CM6A-LR: ens_cmip6 = 324 - 355 . KACE-1-0-G: ens_cmip6 = 356-358 . KIOST-ESM: ens_cmip6 = 359 . MCM-UA-1-0: ens_cmip6 = 360, 361 . MIROC6: ens_cmip6 = 362 - 411 . MIROC-ES2L: ens_cmip6 = 412 - 421 . MPI-ESM-1-2-HAM: ens_cmip6 = 422 - 424 . MPI-ESM1-2-HR: ens_cmip6 = 425 - 434 . MPI-ESM1-2-LR: ens_cmip6 = 435 -  444 . MRI-ESM2-0: ens_cmip6 = 445 - 450 . NESM3: ens_cmip6 = 451 - 455 . NorCPM1: ens_cmip6 = 456 - 485 . NorESM2-LM: ens_cmip6 = 486 - 488 . NorESM2-MM: ens_cmip6 = 489 - 490 . SAM0-UNICON: ens_cmip6 = 491 . TaiESM1: ens_cmip6 = 492 . UKESM1-0-LL: ens_cmip6 = 493 - 510 Acronyms: ENSO - El Niño–Southern Oscillation, CMIP - Coupled Model Intercomparison Project, RCP - Representative Concentration Pathway, ERSST - Extended Reconstructed Sea Surface Temperature, HadISST - Hadley Centre Sea Ice and Sea Surface Temperature, ACCESS- CM2 – Australian Community Climate and Earth System Simulator coupled climate model, ACCESS- ESM – Australian Community Climate and Earth System Simulator Earth system model, AWI - Alfred Wegener Institute, BCC-CSM - Beijing Climate Center Climate System Model, CAMS - Chinese Academy of Meteorological Sciences, CanOE - Canadian Ocean Ecosystem, CESM2 - Community Earth System Model, WACCM - Whole Atmosphere Community Climate Model, CIESM - Community Integrated Earth System Model, CNCC - Centro Euro-Mediterraneo per I Cambiamenti Climatici, CNRM - Centre National de Recherches Météorologiques, E3SM - Energy Exascale Earth System Model, FGOALS - Flexible Global Ocean-Atmosphere-Land System Model, FIO-ESM - First Institute of Oceanography Earth System Model, GFDL - Geophysical Fluid Dynamics Laboratory, GISS - Goddard Institute for Space Studies, IITM - Indian Institute of Tropical Meteorology, INM - Institute for Numerical Mathematics, IPSL - Institut Pierre-Simon Laplace, KIOST-ESM - Korea Institute of Ocean Science & Technology Earth System, MIROC - Model for Interdisciplinary Research on Climate, MPI - Max-Planck-Institut für Meteorologie, NESM - Nanjing University of Information Science and Technology Earth System Model, NorCPM - Norwegian Climate Prediction Model, SAM0-UNICON - Seoul National University Atmosphere Model version 0 with a Unified Convection Scheme (SAM0-UNICON), TaiESM1 - Taiwan Earth System Model version 1, UKESM - The UK Earth System Modelling project. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles are calculated after weighting individual members with the inverse of the ensemble size of the same model. The weight is provided as the weight attribute of ens_cmip5 and ens_cmip6. If X(i) is the array, and w(i) the corresponding weight. - Mean shoud be sum_i(X(i) * w(i)) / sum_i(w(i)) - For percentile values, 1. Sort X and w so that X is in the ascending order 2. Accumulate w until i = j so that accumulated(w)/sum_i(w(i)) equals or exceeds the specified percentile level (e.g. 0.05) 3. Use X(j) or (X(j) + X(j - 1))/2 as the percentile value --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website

  • Data for Cross-Chapter Box 3.1, Figure 1 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Cross-Chapter Box 3.1, Figure 1 shows 15-year trends of surface global warming for 1998-2012 and 2012-2026. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has four panels, with data provided for panels a and b in a subdirectory named panel_ab, and for panels c and d in subdirectories named panel_c and panel_d respectively. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains:  - Observed and modelled global annual mean surface temperature and surface air temperature trends for 1998-2012 - Modelled global annual mean surface air temperature trends for 2012-2026 - Observed annual mean surface temperature trends for 1998-2012 - Composite of modelled annual mean surface air temperature trends for 1998-2012 --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - gmst_trend_1998-2012 in panel_ab/GMST_trend.csv; HadCRUT5 for histogram, ensemble mean of HadCRUT5 and other observations for open triangles at the top, and multimodel ensemble means of CMIP5 and CMIP6 for open diamonds at the top - gsat_trend_1998-2012 in panel_ab/GSAT_trend.csv; CMIP5 and CMIP6 ensembles for histograms, ERA5 for the top filled triangle, and multimodel ensemble means of CMIP5 and CMIP6 for filled diamonds at the top Panel b: - gmst_trend_2012-2026 in panel_ab/GMST_trend.csv; multimodel ensemble means of CMIP5 and CMIP6 for open diamonds at the top - gsat_trend_2012-2026 in panel_ab/GSAT_trend.csv; CMIP5 and CMIP6 ensembles for histograms, and multimodel ensemble means of CMIP5 and CMIP6 for filled diamonds at the top Panel c: - tas in panel_c/TrendPattern_HadCRUT5_mean.nc; shading, with the sig attribute for cross markers Panel d: - tas in panel_d/TrendPattern_composite.nc: shading CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. HadCRUT5 is a gridded dataset of global historical near-surface air temperature anomalies since the year 1850. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and histograms are calculated after weighting each ensemble member with the inverse of the ensemble size of the same model. The values for panels c and d are stored with the K/year unit but scaled to the K/decade, therefore they need to be multiplied by a factor of 10 in order to be consistent with the plotted values. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.

  • Data for Figure 3.22 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.22 shows time series of Northern Hemisphere March-April mean snow cover extent (SCE) from observations, CMIP5 and CMIP6 simulations. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- There are technically two panels top and bottom (CMIP5 and CMIP6), however, the data is stored in the parent directory. --------------------------------------------------- List of data provided --------------------------------------------------- The data is for the Northern Hemisphere snow cover extent anomalies (SCEA) from models and observations: - The SCEA observational data from GLDAS-NOAH (1948-2012), Brown-NOAA (1923-2017), Mudryk et al 2020 (1968-2017) - The SCEA modelled by CMIP5 historical-rcp45 experiment (1923-2017) - The SCEA modelled by CMIP5 historicalNat experiment (1923-2012) - The SCEA modelled by CMIP6 historical-ssp245 experiment (1923-2017) - The SCEA modelled by CMIP6 hist-nat experiment (1923-2017) - The SCEA modelled by CMIP5 and CMIP6 piControl experiments --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- snow_cover_extent_cmip5_obs.csv is the data for the green and brown lines and shadings in the upper panel and grey lines (1923-2017) snow_cover_extent_cmip6_obs.csv is the data for the green and brown lines and shadings in the lower panel and grey lines (1923-2017) snow_cover_extent_piControl.csv for the blue error bars in the both panels Additional details of data provided in relation to figure in the file header (BADC-CSV file) CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.

  • Data for Figure 3.21 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.21 shows the seasonal evolution of observed and simulated Arctic and Antarctic sea ice area (SIA) over 1979-2017. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has several subplots, but they are unidentified, so the data is stored in the parent directory. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains Sea Ice Area anomalies over 1979-2017 relative to the 1979-2000 means from: - Observations (OSISAF, NASA Team, and Bootstrap) - Historical simulations from CMIP5 and CMIP6 multi-model means - Natural only simulations from CMIP5 and CMIP6 multi-model means --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- - *_arctic_* files are used for the plots on the left side of the figure - *_antarctic_* files are used for the plots on the right side of the figure - *_OBS_NASATeam* files are used for the first row of the plot - *_OBS_Bootstrap* are used for the second row of the plot - *_OBS_OSISAF* are used for the third row of the plot - *_ALL_CMIP5* are used in the fourth row of the plot - *_ALL_CMIP6* are used in the fifth row of the plot - *_NAT_CMIP5* are used in the sixth row of the plot - *_NAT_CMIP6* are used in the seventh row of the plot --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- The significance are for the grey dots, it's nan or 1 values. The data has to be overplotted to colored squares. Grey dots indicate multi-model mean anomalies stronger than inter-model spread (beyond ± 1 standard deviation). The coordinates of the data are indices, but in global attributes 'comments' of each file there are relations of indices to months, since months are the y coordinate. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.