Creation year

2008

172 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 172
  • "The Circulation, overflow, and deep convection studies in the Nordic Seas using tracers and models" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00446 - Duration 1 Aug 2003 - 31 Oct 2006 ) led by Prof Andrew Watson of the University of East Anglia, also with co-investigators at the University of East Anglia. Dataset contains sources of water in the Greenland-Scotland overflows: recent tracer release and transient tracer observations, as well as the initiation of convection and its relation to submesoscale hydrodynamics. This dataset collection contains MIT General Circulation Model (MITgcm) ocean model basin and channel experiment outputs. The project investigated two aspects of the Nordic Seas circulation of importance to the North Atlantic meridional overturning circulation (MOC): (1) Sources of water in the Greenland-Scotland overflows: recent tracer release and transient tracer observations were used to constrain inverse models of the sources of Denmark Straits and Faroe-Bank channel overflow waters. (2) The initiation of convection and its relation to submesoscale hydrodynamics: very high-resolution non-hydrostatic models for the Central Greenland Sea were used to model recent observations, which show convection to be intimately related to local sub-mesoscale structure.: The objective was to develop improved descriptions of convection for use in OGCMs, to more accurately describe how the sinking branch of the MOC will be affected by changes in forcing. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • Quaternary QUEST was led by Dr Tim Lenton at UEA, with a team of 10 co-investigators at the Universities of Cambridge, Oxford, Reading, Leeds, Bristol, Southampton and at UEA. This dataset collection contains glacial and isotope model data. Over the last million years, the Earth has experienced a sequence of temperature oscillations between glacial and interglacial states, linked to variations in the Earth’s orbit around the sun. These climate oscillations were accompanied by changes in atmospheric CO2, but the fundamental reasons for this relationship are still unresolved. This project team aimed to compile a synthesis of palaeodata from sediments and ice cores, improve the synchronization of these records with each other, and use this greater understanding of the Earth’s ancient atmosphere to improve Earth system models simulating climate over very long timescales. A combined long-term data synthesis and modelling approach has helped to constrain some key mechanisms responsible for glacial-interglacial CO2 change, and Quaternary QUEST narrowed the field of ocean processes that could have caused glacial CO2 drawdown.

  • Data from "The impact of climate change on the North Atlantic and European storm-track and blocking" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 2 - NE/C509115/1 - Duration 14 Mar 2005 - 13 Mar 2008) led by Prof Sir Brian Hoskins of Imperial College London, Grantham Institute for Climate Change, with co-investigators also at the University of Reading. This dataset collection contains climate model outputs from model runs xbzlf, xbzlg, xcpub, xcpuc, xcpud, xctf and xcth. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation. The major impact of climate change in the European region is likely to be through changes in the storms coming through from the North Atlantic storm-track and in the blocking high-pressure systems that can occur there. Changes in the latitude, frequency or intensity of storms would have implications in terms of flooding and wind damage as well as average precipitation. Blocking highs bring settled spells with little precipitation and temperatures that can be much above average in summer and below average in winter, sometimes with snow. Again changes in their position, frequency or intensity would have important impacts. Reduction in the strength of the thermohaline circulation in the North Atlantic could induce rapid climate change through its impact on the storm-track and blocking. Even smoothly increasing greenhouse gases could lead to rapid changes in the storm-track and blocking either through a reduced thermohaline circulation or a non-linear response. At present there is little confidence in the climate models' abilities to project such changes. In this project, new high-resolution atmospheric models, new analyses of the atmosphere since 1958 and new diagnostic techniques have been used to give such projections and an assessment of the confidence that can be had in them.

  • "The Role of Air-Sea Forcing in Causing Rapid Changes in the North Atlantic Thermohaline Circulation" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00427 - Duration 16 Feb 2004 - 15 Oct 2007) led by Dr Simon Josey of National Ocenaography Centre, with co-investigators also at the National Oceanography Centre. This dataset collections contains analysis of coupled model output of surface forcing variability in ocean circulation. The main aims of this proposal were to determine the role that surface forcing variability plays in causing rapid changes in the ocean circulation and to examine the effect of such changes on climate. These issues are addressed through a combined analysis of coupled model output and observational datasets. The focus of the analysis was in the North Atlantic thermohaline circulation (THC) although the results have been interpreted in the broader context of the global climate system. Variations in the air-sea fluxes of surface heat and freshwater have the potential to cause rapid changes in the ocean circulation eg through their influence on deep convection. However, the relationship between surface forcing variability and rapid changes in the ocean remains to be properly determined; our goal was to significantly improve understanding of this area. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation

  • The Principal Investigator in this project was Prof Ian Woodward from University of Sheffield, with 11 co-investigators at the Centre for Ecology and Hydrology (CEH), the Forestry Commission’s Forest Research, the Agriculture and the Environment Division at Rothamsted Research, and the Universities of Aberdeen, Edinburgh, Leeds, York, Oxford and Southampton. This dataset collection contains soil model output data. QUERCC addressed land surface processes over timescales from days to centuries, with particular emphasis on the carbon cycle. Some processes are already well represented and validated in Dynamic Global Vegetation Models (DGVMs), while others that are known to impact on the carbon cycle are not. Independent carbon and vegetation data sets were compared against DVGMs to assess their current state, and further key modules were developed for nutrient cycling, which exerts a major feedback on carbon exchange, and for a greater resolution of plant processes. A global map of plant functional types that exert significant impacts on the carbon cycle was also developed.

  • The Continuum Absorption in the Visible and Infrared and its Atmospheric Relevance (CAVIAR) campaign will use instruments on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft to determine the strength and temperature dependence of the water vapour continuum over a range of wavelengths. In doing so, the aim is to determine whether water vapour dimers, or the far wings of monomer lines, or a combination of both, are responsible for the continuum absorption, and put the continuum on a more secure theoretical footing.

  • "The Mass balance and freshwater contribution of the Greenland ice sheet: a combined modelling and observational approach" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C51631X/1 - Duration 1 Jun 2005 - 30 Nov 2008) led Prof Jonathan Bamber of the University of Bristol, with co-investigators at the Nansen Environmental & Remote Sensing Center, Norway, the Royal Netherlands Meteorology Institute and Dr MR van den Broeke, University of Utrecht, Netherlands. The dataset quantifies how, where and when the Greenland ice sheet has fed fresh water through iceberg calving, subglacial melting and meltwater runoff into the surrounding ocean during the last half century. This dataset collection contains precipitation, evaporation and run off model outputs. The thermohaline circulation is a global ocean circulation, driven by differences in the density of the sea water that is controlled by temperature (thermal) and salinity (haline). In the north Atlantic, the thermohaline circulation transports warm and salty water to the north, where it, together with the North Atlantic Drift (the north-eastern most extension of the Gulfstream), contributes to the warm sea surface along the coast of western Europe and to the relatively mild European winters. From ice cores drilled in Greenland, there is evidence that rapid climate changes took place during the last glacial (the period roughly from 100,000 to 20,000 years before present): over a period of just several decades, northern European winter temperature dropped by as much as 10 degrees for periods typically lasting 1000 years. The present explanation is that large, pulse-like freshwater fluxes (probably from icebergs that originated from the continental ice sheets) were released into the north Atlantic where they weakened or shut down the thermohaline circulation. In a warmer greenhouse climate, it is also likely that the freshwater flux into the north Atlantic will increase; using a scenario of doubling CO2 within the next 70 years, most atmospheric models predict an increase in precipitation in high latitudes. One of the great uncertainties in these projections is the role of the Greenland ice sheet, which is situated in the middle of the area of interest. We know so little about the variability in its meltwater production and its sensitivity to regional warming that its contribution to the problem of the north Atlantic thermohaline circulation is often ignored, in spite of the fact that the Greenland ice sheet contains enough water to rise global sea level by 6 m! In this proposed research we quantifyed in detail how, where and when the Greenland ice sheet has fed fresh water through iceberg calving, subglacial melting and meltwater runoff into the surrounding ocean during the last half century. The melting and runoff was calculated using a coupled snow - atmosphere model that is run over Greenland at very high resolution (11 km in the horizontal), which took about 1 year on a supercomputer to run! Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • "Improving our ability to predict rapid changes in the El Nino Southern Oscillation climatic phenomenon" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00443 - Duration 1 Jan 2004 - 30 Sep 2007) led by Prof Alexander Tudhope of the University of Edinburgh, with co-investigators at the Scottish Universities Environment Research Centre, Bigelow Laboratory for Ocean Sciences, and the University of Reading. This dataset collection contains HadCM3 model outputs. The objective was to use a combination of palaeoclimate reconstruction from annually-banded corals and the fully coupled HadCM3 atmosphere-ocean general circulation model to develop an understanding of the controls on variability in the strength and frequency of ENSO, and to improve our ability to predict the likelihood of future rapid changes in this important element of the climate system. To achieve this, three periods were targeted: a) 0-2.5 ka: Representative of near-modern climate forcing; revealing the internal variability in the system. b) 6-9 ka: a period of weak or absent ENSO, and different orbital forcing; a test of the model's ability to capture externally-forced change in ENSO. c) 200-2100 AD: by using the palaeo periods to test and optimise model parameterisation, produce a new, improved, prediction of ENSO variability in a warming world. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • This collection contains data from "The Quantitative applications of high-resolution late Holocene proxy data sets: estimating climate sensitivity and thermohaline circulation influences" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00440 - Duration 1 Jul 2003 - 30 Jun 2008) led by Prof Keith Briffa of the University of East Anglia, with co-investigators at the University of East Anglia. This dataset collection contains self-calibrating Palmer Drought Severity Index data. This project analysed the output from state-of-the-art coupled climate models in conjunction with very long instrumental climate data and an extensive archive of annual- and selected decadal-resolution palaeoclimate data to study climate changes during the past millennium. Actual and model-derived synthetic networks of palaeoclimate data have been used to estimate the extent to which (i) variations in Atlantic meridional overturning circulation strength; (ii) variations in the North Atlantic Oscillation; and (iii) the sensitivity of climate to external forcing changes can be reconstructed from different networks of palaeoclimate data, making assumptions about coverage, seasonality of response and reliability of expressed climate signal.

  • The Met Office Hadley Centre's sea surface temperature data set, HadSST2, replaces the Met Office Historical Sea Surface Temperature dataset (MOHSST6) and is a monthly global field of SST (Sea Surface Temperature) on a 5 deg latitude by 5 deg longitude grid from 1850 to 2013. The data are neither interpolated nor variance adjusted. The observations that make up this dataset are taken from the International Comprehensive Ocean-Atmosphere DataSet, ICOADS (see http://www.cdc.noaa.gov/coads/), until 1997 and from the NCEP GTS archive thereafter. Individual observations must first pass a series of quality checks (track check, reality check, positional check, climatology check, buddy check, duplicate check). The quality-checked observations in each 1degree longitude X 1degree latitude X pentad gridbox are then averaged using a winsorised average. The pentad climatology is then subtracted from these pentad superobs and the resulting anomalies are averaged to 5degree X 5degree X monthly resolution. The data are then bias-corrected for the use of buckets in the period 1850-1941.