Creation year

2019

860 record(s)

 

Type of resources

Essential Climate Variables

Geophysical Quantities

Frequencies

Platforms

Sensors

Process Levels

Institutes

Product Strings

Keywords

Topics

Contact for the resource

Provided by

Years

Update frequencies

GEMET keywords

From 1 - 10 / 860
  • Range corrected lidar signal and volume depolarisation ratio data from the Met Office's Raymetrics LR111-D300 lidar located at Camborne, Cornwall. Data available from June 2018 onwards, though the instrument is only operated sporadically (see below for further details). This instrument is one of a suite of 10 Raman lidars deployed by the Met Office around the UK to complement a wider network of ceilometers within the "LIDARNET" upper air monitoring network. Returns from these instruments form a range of products for use in forecasting and hazard detection. The backscatter profiles can allow detection of aerosol species such as volcanic ash where suitable instrumentation is deployed. The primary aim of the Raman lidar network is the detection and quantification of volcanic ash aerosols during a volcanic event, and the network is only test fired only for a few hours each week. Outside of these times the lidars may be fired if there is a mineral dust outbreak or other such aerosol event of interest. The lidars will not fire if any precipitation is detected. Raman channel data are not presently available from this instrument in the CEDA archives.

  • The ESA Fire Disturbance Climate Change Initiative (Fire_cci) project has produced maps of global burned area developed from satellite observations. The Small Fire Database (SFD) pixel products have been obtained by combining spectral information from Sentinel-2 MSI data and thermal information from MODIS MOD14MD Collection 6 active fire products. This gridded dataset has been derived from the Small Fire Database (SFD) Burned Area pixel product for Sub-Saharan Africa, v1.1 (also available), which covers Sub-Saharan Africa for the year 2016, by summarising its burned area information into a regular grid covering the Earth at 0.25 x 0.25 degrees resolution and at monthly temporal resolution.

  • This v2.0 SST_cci Along-Track Scanning Radiometer (ATSR) Level 3 Uncollated (L3U) Climate Data Record (CDR) consists of stable, low-bias sea surface temperature (SST) data from the Along Track Scanning Radiometer (ATSR) series of satellite instruments. It covers the period between 11/1991 and 04/2012. This Level 3 Uncollated (L3U) product provides these SST data on a 0.05 regular latitude-longitude grid with a single orbit per file. The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project(ESA SST_cci). The data products from SST_cci accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research. This CDR Version 2.0 product is a later version of the Long Term product v1.1. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/ .

  • This dataset contains a time series of ice velocities for the Petermann Glacier in Greenland, derived from Sentinel-1 SAR (Synthetic Aperture Radar) data acquired between 22/1/2015-19/3/2017. It has been produced by the ESA Greenland Ice Sheet Climate Change Initiative (CCI) project. Data files are delivered in NetCDF format at 250m grid spacing in North Polar Stereographic projection (EPSG: 3413). The horizontal velocity components are provided in true meters per day, towards the EASTING(x) and NORTHING(y) directions of the grid.

  • This dataset contains a time series of ice velocities for the Hagen glacier in Greenland derived from Sentinel-1 SAR (Synthetic Aperture Radar) data acquired between January 2015 and March 2017. It has been produced by the ESA Greenland Ice Sheet Climate Change Initiative (CCI) project. Data files are delivered in NetCDF format at 250m grid spacing in North Polar Stereographic projection (EPSG: 3413). The horizontal velocity components are provided in true meters per day, towards the EASTING(x) and NORTHING(y) directions of the grid.

  • An ensemble of simulations made using the Unified Model version 6.6 (HadGEM2) in AMIP (atmosphere only) configuration for the SAPRISE (South Asian PRecIpitation: A SEamless assessment) project. The simulations are used to investigate the impacts of aerosols on the South Asian Monsoon. The four-member ensemble of simulations are forced with anthropogenic-only aerosols i.e. sulphur dioxide, black carbon and biomass burning aerosols. The simulations cover the period from 1850-2000. Since aerosol-only simulation is not compulsory in CMIP5, these four runs are complements to other CMIP5 simulations conducted by Met Office using the HadGEM2-ES (vn 6.6).

  • Airborne atmospheric measurements from core and non-core instrument suites data on board the FAAM BAE-146 aircraft collected for FAAM AEOG : Demonstration of Comprehensive Approach to monitoring atmospheric Emissions from Oil and Gas installations project.

  • This dataset contains scan data from the National Centre for Atmospheric Science Atmospheric Measuring Facility's mobile X-band radar during the Radar Applications in Northern Scotland (RAINS). The radar was deployed at Kinloss Barracks, near Forres in Moray, Scotland from January to August 2016.

  • The NERC-funded Microphysics of Antarctic Clouds (MAC) project was centred on an aircraft campaign measuring clouds, aerosols, and boundary layer properties over the Weddell Sea, Antarctica. These data are simulations of the Polar-optimised Weather Research and Forecasting (PWRF) model for 5 configurations of the model's Morrison microphysics scheme, produced for a case study of two separate flights over the same region during the campaign (British Antarctic Survey MASIN twin-otter aircraft flights 218 an 219 on 27th November 2015). Each simulation contains data from two domains - a parent domain with 5km grid size and a nest with a 1km grid size. The control simulation used default physics options in the PWRF model's Morrison microphysics scheme. For the no-threshold, 2xHM, 5xHM, 10xHM simulations, thresholds restricting Hallett-Mossop secondary ice production in the PWRF model's Morrison microphysics scheme were removed, and for the 2xHM, 5xHM, and 10xHM cases the corresponding ice multiplication factor was increased by a factor of 2, 5 or 10. In all simulations, an approximation of the DeMott et al., 2010 (PNAS) parametrization used for primary ice nucleation. Methodology and further details can be found in Young et al., 2019 (Geophysical Research Letters): Radiative effects of secondary ice enhancement in coastal Antarctic clouds.

  • Co-Ordinated Regional Downscaling Experiment (CORDEX) data for the East Asia Domain (EAS-44). The data is produced by the MetOffice Hadley Centre regional model HadRM3P running at 0.44 degree resolution over the Central Asia CORDEX domain (EAS-44). HadRM3P is a regional climate model based on the HadCM3 Coupled Climate Model. The HadRM3P model is driven by European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data to run the CORDEX Evaluation experiment, representative of the period from 1990 to 2011. The model outputs are stored on the native grid used for the simulation, which has a consistent spatial resolution across the simulation domain. Each variable is stored at the daily timescale. The collection also includes monthly and seasonal averages. In addition, the archive also includes sub-daily data. The CORDEX program is sponsored by the World Climate Research Program (WCRP) to organise an internationally coordinated framework to produce improved regional climate change projections for all land regions world-wide. The CORDEX-results will serve as input for climate change impact and adaptation studies.