From 1 - 4 / 4
  • Co-Ordinated Regional Downscaling Experiment (CORDEX) data for the South America Domain (SAM) produced by the Met Office Hadley Centre. The CORDEX program is sponsored by the World Climate Research Program (WCRP) to organise an internationally coordinated framework to produce improved regional climate change projections for all land regions world-wide. The CORDEX-results will serve as input for climate change impact and adaptation studies.

  • Data for Figure 3.35 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.35 shows Southern Annular Mode indices in the last millennium.   --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has two panels, and all the data are provided in sam_millennium.nc.   --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains: - Annual SAM reconstructions. - Annual-mean SAM index by CMIP5 and CMIP6 Last Millennium simulations extended by historical simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - sam_abram_runmean, sam_datwyler_runmean: thin blue and brown lines - sam_abram_lowpass, sam_datwyler_lowpass: thick blue and brown lines Panel b: - sam_cmip_runmean: thin lines . MIROC-ES2L: ensemble = 10 (violet) . MRI-ESM2-0: ensemble = 11 (green) . CMIP5: ensemble = 1, 2, 3, 4, 5, 6, 7, 8, 9 (grey) - sam_cmip_lowpass: thick lines . MIROC-ES2L: ensemble = 10 (violet) . MRI-ESM2-0: ensemble = 11 (green) . CMIP5: ensemble = 1, 2, 3, 4, 5, 6, 7, 8, 9 (grey) --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website

  • Data for Figure 3.33 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.33 shows observed and simulated Northern Annular Mode (NAM), North Atlantic Oscillation (NAO) and Southern Annular Mode (SAM) in boreal winter. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has twelve panels, with data provided for panels (a), (d), (g) and (j) in the subdirectory named panel_adgj, panels (b), (e), (h) and (k) in the subdirectory named panel_behk, and panels (c), (f), (i) and (l) in the subdirectory named panel_cfil.   --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains:  - Observed sea level pressure anomalies associated with NAM. - Observed sea level pressure anomalies associated with NAO. - Observed sea level pressure anomalies associated with SAM. - Simulated sea level pressure anomalies associated with NAM. - Simulated sea level pressure anomalies associated with NAO. - Simulated sea level pressure anomalies associated with SAM. - Taylor statistics of sea level pressure anomalies associated with NAM. - Taylor statistics of sea level pressure anomalies associated with NAO. - Taylor statistics of sea level pressure anomalies associated with SAM. - 1958-2014 trends of the NAM index. - 1958-2014 trends of the NAO index. - 1979-2014 trends of the SAM index. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - nam_patterns(0, :, :) in panel_adgj/nam.obs.nc; shading - nam_pattern_significance in panel_adgj/nam.obs.nc; cross marker Panel b: - nao_patterns(0, :, :) in panel_behk/nao.obs.nc; shading - nao_pattern_significance in panel_behk/nao.obs.nc; cross marker Panel c: - sam_patterns(0, :, :) in panel_cfil/sam.obs.nc; shading - sam_pattern_significance in panel_cfil/sam.obs.nc; cross marker Panel d: - nam_patterns in panel_adgj/nam.hist.cmip6.nc; multimodel ensemble mean for shading, and sign agreement for hatching Panel e: - nao_patterns in panel_behk/nao.hist.cmip6.nc; multimodel ensemble mean for shading, and sign agreement for hatching Panel f: - sam_patterns in panel_cfil/sam.hist.cmip6.nc; multimodel ensemble mean for shading, and sign agreement for hatching Panel g: - nam_tay_stat(:, 0:1) in panel_adgj/nam.amip.cmip6.nc: multimodel ensemble mean for the orange dot - nam_tay_stat(:, 0:1) in panel_adgj/nam.hist.cmip5.nc: blue crosses, with multimodel ensemble mean for the blue dot - nam_tay_stat(:, 0:1) in panel_adgj/nam.hist.cmip6.nc: red crosses, with multimodel ensemble mean for the red dot - nam_tay_stat(:, 0:1) in panel_adgj/nam.obs.nc: black dots Panel h: - nao_tay_stat(:, 0:1) in panel_behk/nao.amip.cmip6.nc: multimodel ensemble mean for the orange dot - nao_tay_stat(:, 0:1) in panel_behk/nao.hist.cmip5.nc: blue crosses, with multimodel ensemble mean for the blue dot - nao_tay_stat(:, 0:1) in panel_behk/nao.hist.cmip6.nc: red crosses, with multimodel ensemble mean for the red dot - nao_tay_stat(:, 0:1) in panel_behk/nao.obs.nc: black dots Panel i: - sam_tay_stat(:, 0:1) in panel_cfil/sam.amip.cmip6.nc: multimodel ensemble mean for the orange dot - sam_tay_stat(:, 0:1) in panel_cfil/sam.hist.cmip5.nc: blue crosses, with multimodel ensemble mean for the blue dot - sam_tay_stat(:, 0:1) in panel_cfil/sam.hist.cmip6.nc: red crosses, with multimodel ensemble mean for the red dot - sam_tay_stat(:, 0:1) in panel_cfil/sam.obs.nc: black dots Panel j: - nam_pc_trends in panel_adgj/nam.amip.cmip6.nc: multimodel ensemble mean for orange vertical line - nam_pc_trends in panel_adgj/nam.hist.cmip5.nc: multimodel ensemble mean for blue vertical line - nam_pc_trends in panel_adgj/nam.hist.cmip6.nc: histogram, with multimodel ensemble mean for red vertical line - nam_pc_trends in panel_adgj/nam.obs.nc: black vertical lines Panel k: - nao_pc_trends in panel_behk/nao.amip.cmip6.nc: multimodel ensemble mean for orange vertical line - nao_pc_trends in panel_behk/nao.hist.cmip5.nc: multimodel ensemble mean for blue vertical line - nao_pc_trends in panel_behk/nao.hist.cmip6.nc: histogram, with multimodel ensemble mean for red vertical line - nao_pc_trends in panel_behk/nao.obs.nc: black vertical lines Panel l: - sam_pc_trends in panel_cfil/sam.amip.cmip6.nc: multimodel ensemble mean for orange vertical line - sam_pc_trends in panel_cfil/sam.hist.cmip5.nc: multimodel ensemble mean for blue vertical line - sam_pc_trends in panel_cfil/sam.hist.cmip6.nc: histogram, with multimodel ensemble mean for red vertical line - sam_pc_trends in panel_cfil/sam.obs.nc: black vertical lines --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and histograms are obtained after weighting individual members with the inverse of the ensemble size of the same model. ensemble_assign in each file provides the model number to which each ensemble member belongs. This weighting does not apply to the sign agreement calculation. Multimodel ensemble mean of the pattern correlation in Taylor statistics is calculated via Fisher z-transformation and back transformation. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains supporting information on the figure in Section and details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website

  • Data for Figure 3.34 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.34 shows attribution of observed seasonal trends in the annular modes to forcings.   --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has 3 panels, and all the data are provided in a single file named NAM_SAM_detection_attribution.nc. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains - Observed and simulated DJF NAM trends for 1958-2019 - Observed and simulated JJA NAM trends for 1958-2019 - Observed and simulated DJF SAM trends for 1979-2019 - Observed and simulated JJA SAM trends for 1979-2019 - Observed and simulated DJF SAM trends for 2000-2019 - Observed and simulated JJA SAM trends for 2000-2019 Simulations are from CMIP6 historical, hist-GHG, hist-aer, hist-nat, and hist-stratO3 simulations, and from equivalent time segments from CMIP6 piControl simulations (one segment from one model). NAM: Northern Annular Mode ​​​ SAM: Southern Annular Mode GHG: greenhouse gas JJA: June, July, August DJF: December, January, February --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - NAM_obs_DJF_1958_2019: grey horizontal lines in the left -->ERA5: obs_dataset = 0\n -->JRA-55: obs_dataset = 1\n - NAM_piControl_DJF_62yrs: multimodel ensemble mean and percentiles for blue open box-whisker in the left - NAM_hist_DJF_1958_2019: multimodel ensemble mean and percentiles for red open box-whisker in the left, and multimodel ensemble mean and confidence interval for red filled box, with ensemble means of individual models for black dots, in the left - NAM_GHG_DJF_1958_2019: multimodel ensemble mean and confidence interval for brown filled box, with ensemble means of individual models for black dots, in the left - NAM_aer_DJF_1958_2019:  multimodel ensemble mean and confidence interval for light blue filled box, with ensemble means of individual models for black dots, in the left - NAM_stratO3_DJF_1958_2019: multimodel ensemble mean and confidence interval for purple filled box, with ensemble means of individual models for black dots, in the left - NAM_nat_DJF_1958_2019: multimodel ensemble mean and confidence interval for green filled box, with ensemble means of individual models for black dots, in the left - NAM_obs_JJA_1958_2019: grey horizontal lines in the right -->ERA5: obs_dataset = 0\n -->JRA-55: obs_dataset = 1\n - NAM_piControl_JJA_62yrs: multimodel ensemble mean and percentiles for blue open box-whisker in the right - NAM_hist_JJA_1958_2019: multimodel ensemble mean and percentiles for red open box-whisker in the right, and multimodel ensemble mean and confidence interval for red filled box, with ensemble means of individual models for black dots, in the right - NAM_GHG_JJA_1958_2019: multimodel ensemble mean and confidence interval for brown filled box, with ensemble means of individual models for black dots, in the right - NAM_aer_JJA_1958_2019:  multimodel ensemble mean and confidence interval for light blue filled box, with ensemble means of individual models for black dots, in the right - NAM_stratO3_JJA_1958_2019: multimodel ensemble mean and confidence interval for purple filled box, with ensemble means of individual models for black dots, in the right - NAM_nat_JJA_1958_2019: multimodel ensemble mean and confidence interval for green filled box, with ensemble means of individual models for black dots, in the right Panel b: - SAM_obs_DJF_1979_2019: grey horizontal lines in the left -->ERA5: obs_dataset = 0\n -->JRA-55: obs_dataset = 1\n - SAM_piControl_DJF_41yrs: multimodel ensemble mean and percentiles for blue open box-whisker in the left - SAM_hist_DJF_1979_2019: multimodel ensemble mean and percentiles for red open box-whisker in the left, and multimodel ensemble mean and confidence interval for red filled box, with ensemble means of individual models for black dots, in the left - SAM_GHG_DJF_1979_2019: multimodel ensemble mean and confidence interval for brown filled box, with ensemble means of individual models for black dots, in the left - SAM_aer_DJF_1979_2019:  multimodel ensemble mean and confidence interval for light blue filled box, with ensemble means of individual models for black dots, in the left - SAM_stratO3_DJF_1979_2019: multimodel ensemble mean and confidence interval for purple filled box, with ensemble means of individual models for black dots, in the left - SAM_nat_DJF_1979_2019: multimodel ensemble mean and confidence interval for green filled box, with ensemble means of individual models for black dots, in the left - SAM_obs_JJA_1979_2019: grey horizontal lines in the right -->ERA5: obs_dataset = 0\n -->JRA-55: obs_dataset = 1\n - SAM_piControl_JJA_41yrs: multimodel ensemble mean and percentiles for blue open box-whisker in the right - SAM_hist_JJA_1979_2019: multimodel ensemble mean and percentiles for red open box-whisker in the right, and multimodel ensemble mean and confidence interval for red filled box, with ensemble means of individual models for black dots, in the right - SAM_GHG_JJA_1979_2019: multimodel ensemble mean and confidence interval for brown filled box, with ensemble means of individual models for black dots, in the right - SAM_aer_JJA_1979_2019:  multimodel ensemble mean and confidence interval for light blue filled box, with ensemble means of individual models for black dots, in the right - SAM_stratO3_JJA_1979_2019: multimodel ensemble mean and confidence interval for purple filled box, with ensemble means of individual models for black dots, in the right - SAM_nat_JJA_1979_2019: multimodel ensemble mean and confidence interval for green filled box, with ensemble means of individual models for black dots, in the right Panel c: - SAM_obs_DJF_2000_2019: grey horizontal lines in the left -->ERA5: obs_dataset = 0\n -->JRA-55: obs_dataset = 1\n - SAM_piControl_DJF_20yrs: multimodel ensemble mean and percentiles for blue open box-whisker in the left - SAM_hist_DJF_2000_2019: multimodel ensemble mean and percentiles for red open box-whisker in the left, and multimodel ensemble mean and confidence interval for red filled box, with ensemble means of individual models for black dots, in the left - SAM_GHG_DJF_2000_2019: multimodel ensemble mean and confidence interval for brown filled box, with ensemble means of individual models for black dots, in the left - SAM_aer_DJF_2000_2019:  multimodel ensemble mean and confidence interval for light blue filled box, with ensemble means of individual models for black dots, in the left - SAM_stratO3_DJF_2000_2019: multimodel ensemble mean and confidence interval for purple filled box, with ensemble means of individual models for black dots, in the left - SAM_nat_DJF_2000_2019: multimodel ensemble mean and confidence interval for green filled box, with ensemble means of individual models for black dots, in the left - SAM_obs_JJA_2000_2019: grey horizontal lines in the right -->ERA5: obs_dataset = 0\n -->JRA-55: obs_dataset = 1\n - SAM_piControl_JJA_20yrs: multimodel ensemble mean and percentiles for blue open box-whisker in the right - SAM_hist_JJA_2000_2019: multimodel ensemble mean and percentiles for red open box-whisker in the right, and multimodel ensemble mean and confidence interval for red filled box, with ensemble means of individual models for black dots, in the right - SAM_GHG_JJA_2000_2019: multimodel ensemble mean and confidence interval for brown filled box, with ensemble means of individual models for black dots, in the right - SAM_aer_JJA_2000_2019:  multimodel ensemble mean and confidence interval for light blue filled box, with ensemble means of individual models for black dots, in the right - SAM_stratO3_JJA_2000_2019: multimodel ensemble mean and confidence interval for purple filled box, with ensemble means of individual models for black dots, in the right - SAM_nat_JJA_2000_2019: multimodel ensemble mean and confidence interval for green filled box, with ensemble means of individual models for black dots, in the right --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means, interquartile ranges and 5th and 95th percentiles of historical and hist-* simulations are calculated after weighting individual members with the inverse of the ensemble size of the same model. The weight is given as the weight attribute of each variable. The weighting is not applied to piControl simulations. Filled boxes and black dots are evaluated based on the models with minimum 3 ensemble members. ensemble_assign attribute in each variable provides the model number to which each ensemble member belongs. For the confidence interval, first the ensemble average of individual models (with minimum 3 ensemble members) are calculated and then the confidence interval is evaluated based on t statistic. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains supporting information on the figure in Section and details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website