Unified Model
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
This dataset contains modelling output from the u-ag706 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period January 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.
-
This dataset contains modelling output from the u-ab326 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period July 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.
-
This dataset contains modelling output from the u-ab978 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period July 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.
-
This dataset contains modelling output from the u-ae766 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period June-July 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.
-
This dataset contains modelling output from the u-af015 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period June-July 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.
-
This dataset contains modelling output from the u-ag477 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period January 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.
-
Cascade was a NERC funded consortium project to study organized convection in the tropical atmosphere using large domain cloud system resolving model simulations. This datset collection contains measurements from atmospheric model runs of the tropics. Within the Cascade project a version of the Met Office Unified Model (UM) at horizontal resolutions of 1.5km - 40km was used Africa, Indian Ocean and West Pacific Ocean. The horizontal resolution allowed the individual cloud systems to simulate the large-scale organization. The combination of the high resolution and large domains allowed the upscale transports of heat, moisture and momentum and investigated the impact of these transports on the evolution of the synoptic and planetary scale systems. Two domains of interest were chosen to represent continental and oceanic convection respectively. Simulations of the West African Monsoon region were used to understand the range of factors which influence the diurnal cycle of convection over complex topography and to identify the impact of the diurnal cycle and other mesoscale organization on the synoptic organization of convection by African Easterly Waves. Simulations of the Indian Ocean and West Pacific Warm Pool were used to investigate the role of mesoscale and synoptic scale organization on the evolution of the Madden-Julian Oscillation and the influence of the diurnal cycle (e.g. land-sea breeze circulations) on the maintenance of the climate of the Maritime Continent region. In addition, simulations over an idealized ocean surface were used to investigate the organization of convection by equatorially trapped wave modes.
-
This dataset contains the input data (initial conditions, boundary conditions, initial perturbations) for Met Office Unified Model simulations performed during the PRESTO (PREcipitation STructures over Orography) project. It also contains the 2D and 3D output files from these simulations. The PRESTO project was funded by the Natural Environment Research Council (NERC) with the grant references - NE/I024984/1 and NE/I026545/1 - led by Professor Suzanne Gray (University of Reading) and Professor David Schultz (University of Manchester). PRESTO provided a leap forward in the understanding and prediction of quasi-stationary orographic convection in the UK and beyond. This was achieved through an intensive climatological analysis over several regions of the globe where continuous radar data was available, which identified the environmental conditions that support the bands and their characteristic locations and morphologies. Complementary high-resolution numerical simulations pinpointed the underlying mechanisms behind the bands and their predictability in numerical weather prediction models. This work provides positive impacts for the forecasting community, general public, and other academics in the field. Forecasters benefit from the identification of simple diagnostics that can be used operationally to predict these events based on available model forecasts and/or upstream soundings. A series of activities were used to directly engage with forecasters to effectively disseminate our findings. The public benefit from this improved forecasting of potentially hazardous precipitation events. The academic community benefit from the advanced physical understanding (which was disseminated through conferences, workshops, and peer-reviewed publications) and the numerous international collaborations associated with this project.
-
Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. This dataset contains data from the xfixa simulation which ran using the Met Office Unified Model (UM) at 12km horizontal resolution over the domain 20W-20E, 5S-28N which encompasses the west african monsoon. Cascade Africa simulations are used to study African Easterly Waves. This dataset contains 4km Africa model measurements from xfixa run.
-
ACCACIA was part of the NERC Arctic research programme. (NERC Reference: NE/I028858/1). ACCACIA aimed to improve our understanding of aerosol-cloud interactions in the Arctic, and the potential changes and feedbacks that may result from decreasing Arctic sea ice cover in the future. In situ measurements have been made during two field campaigns utilising ship-based measurements of surface aerosol sources and airborne measurements of aerosol and cloud microphysical properties, boundary layer dynamics, and radiative forcing. The observations have been complemented by modelling studies on a range of scales: from explicit aerosol and cloud microphysics process modelling, through large eddy simulation and mesoscale models, up to global climate models. This dataset contains measurements from the Met Office UM (Unified Model) model.