From 1 - 10 / 19
  • Data from the ETH-PMOD (Swiss Federal Institute of Technology Zurich and the Physical-Meteorology Observatory Davos) SOCOL3 model, part of the International Global Atmospheric Chemistry (IGAC)/Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Program (WCRP). The dataset includes data for the following CCMI-1 experiments: Reference experiments: ref-C1 and ref-C2. Sensitivity experiments: senC2fCH4, senC2CH4rcp85, senC2fEmis, senC2fN2O, senC2rcp26, senC2rcp45, senC2rcp85. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases (GHGs), tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions. senC2CH4rcp85: Similar to ref-C2 but the methane surface-mixing ratio follows the RCP 8.5 scenario (Meinshausen et al., 2011), all other GHGs and forcings follow RCP 6.0. senC2fCH4: Similar to ref-C2 but the methane surface-mixing ratio is fixed to its 1960 value. senC2fEmis: Similar to ref-C2 but with surface and aircraft emissions fixed to their respective 1960 levels. senC2fN2O: Similar to ref-C2 but the nitrous oxide surface-mixing ratio is fixed to its 1960 value. senC2rcp26: The same as ref-C2, but with the GHG scenario changed to RCP 2.6 (Meinshausen et al., 2011). senC2rcp45: The same as ref-C2, but with the GHG scenario changed to RCP 4.5 (Meinshausen et al., 2011). senC2rcp85: The same as ref-C2, but with the GHG scenario changed to RCP 8.5 (Meinshausen et al., 2011).

  • SPARC (Stratosphere–troposphere Processes And their Role in Climate) is an international activity started in 2013 (under the World Climate Research Programme, WCRP) to compare and evaluate all available global atmospheric reanalyses in the middle atmosphere; publish several journal papers and the WCRP/SPARC reports. This dataset collection provides zonal-mean diagnostics computed from reanalysis data sets on pressure levels. It is divided into two components. The first provides dynamical variables like temperature, geopotential height, and wind field and derived diagnostics such as eddy fluxes and a complete budget of zonal momentum. The second provides heating rates. In both components, data is provided on two grids. The first provides the diagnostics on the same grid on which reanalysis data was obtained. The second provides, using horizontal interpolation, the diagnostics on a common grid for all data sets. All diagnostics are provided as a function of latitude and pressure from 1958 to present, depending on each reanalysis' availability. This data set was produced to facilitate the comparison of reanalysis data sets for the collaborators of the SPARC-Reanalysis Intercomparison Project (S-RIP). The data set is substantially smaller in size compared to the full three-dimensional reanalysis fields and uses standardized numerical methods. The data set includes all global reanalyses available at the time of its development and will be extended to include new reanalysis products in the future.

  • Data from the Meteorological Research Institute (MRI) Japan Earth System Model version 1 (ESM1), part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Programme (WCRP). The dataset includes data for the following CCMI-1 reference experiments: ref-C1, refC1SD and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C1SD: Similar to ref-C1 but the models are nudged towards reanalysis datasets, and correspondingly the simulations only cover 1980–2010. (“SD” stands for specified dynamics.) ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.

  • Data from the Seoul National University Atmospheric Chemistry Modelling Group (SNU-ACMG) Global/Regional Integrated Model system‐Chemistry Climate Model (GRIMs-CCM) model , part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Programme (WCRP). The dataset includes data for the CCMI-1 reference experiments ref-C1 and ref-C1SD. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C1SD: Similar to ref-C1 but the models are nudged towards reanalysis datasets, and correspondingly the simulations only cover 1980–2010. (“SD” stands for specified dynamics.)

  • Data from the GSFC (Goddard Space Flight Centre) GEOSCCM model simulations, part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Programme (WCRP). The dataset includes data for the CCMI-1 reference experiments ref-C1 and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.

  • Data from the Met Office Hadley Centre (MOHC) Earth System model HadGEM3-ES, part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Program (WCRP). The dataset includes data for the following CCMI-1 reference experiments: ref-C1 and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.

  • Data from the University of Cambridge - United Kingdom Chemistry and Aerosol model (UMUKCA-UCAM) , part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Programme (WCRP). The dataset includes data for the following CCMI-1 reference experiments: ref-C1, ref-C1SD and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C1SD: Similar to ref-C1 but the models are nudged towards reanalysis datasets, and correspondingly the simulations only cover 1980–2010. (“SD” stands for specified dynamics.) ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.

  • This dataset contains model output for refC1SD experiment using version 7.3 of the Met Office Unified Model, based on the science version HadGEM3-A configuration (Hewitt et al.,2011, DOI:10.5194/gmd-4-223-2011) coupled with the United Kingdom Chemistry and Aerosol scheme. The simulation follows the experimental design of the IGAC/Stratosphere troposphere Processes And their Role in Climate (SPARC) Chemistry-Climate Model Initiative (CCMI) refC1SD experiment. This simulation spans 1979-2010, with emissions taken from MACCity (Granier et al., 2011, DOI:10.1007/s10584-011-0154-1), and uses prescribed sea surface temperatures and sea ice from HadISST (Rayner et al., 2003, DOI:10.1029/2002JD002670). Horizontal wind components (u and v) and potential temperature (θ) are nudged (following (Telford et al., 2008, DOI:10.5194/acp-8-1701-2008) to ERA-Interim Reanalysis data (Dee et al.,2011, DOI:10.1002/qj.828). The data comprise monthly mean output over the period 1979-2010 for ozone, ozone production and loss, and diagnostics suitable for the calculation of the tropospheric ozone budget. We archive data from this experiment as HIST, and iIn order to assess the role of recent changes to the stratospheric ozone burden on the tropospheric ozone budget, a second integration (fODS_LBC) is archived in which the lower boundary condition of all halogenated ODS was kept constant at 1979 values, but all other forcings and emissions were allowed to evolve as in the HIST experiment.

  • Data from the MOHC (Met Office Hadley Centre) HadGEM3-ES model, part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Program (WCRP). The dataset includes data for the CCMI-1 reference experiments: ref-C1 and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.

  • Data from the CNRM-CERFACS CNRM-CM5-3 and MOCAGE model, part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative (CCMI-1). The CNRM-CERFACS team consisted of the following agencies: Centre National de Recherches Meteorologiques (CNRM) and Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (CERFACS). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Programme (WCRP). The dataset includes data for the CCMI-1 reference experiments ref-C1, ref-C1SD and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C1SD: Similar to ref-C1 but the models are nudged towards reanalysis datasets, and correspondingly the simulations only cover 1980–2010. (“SD” stands for specified dynamics.) ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.