Camera
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
This dataset contain timelapse images at Bukit Atur from the CEH Camera75m. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.
-
This dataset contain timelapse images at Bukit Atur from the CEH Camera75m. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.
-
This dataset contains cloud images from the NCAS Camera 11, one of two identical cameras (designated as ncas-cam-11 and ncas-cam-12) captured at various sites around the Magdalena Mountains, New Mexico, USA, as part of the Deep Convective Microphysics Experiment (DCMEX). DCMEX examined the formation and development of clouds over mountains during July and August 2022. These cameras were designed to take simultaneous images of the same object while placed a distance apart to create a stereo image, but this was not always possible; on some days only one camera was used or the two cameras were deployed in separate locations. The images from this camera were taken during the duration of the DCMEX campaign of clouds from a range of sites. These are accompanied by similar images from a sibling camera (see connected dataset). Where the two cameras were operated at the same site they were synchronised in terms of camera settings (exposure, etc) and camera pointing directions to facilitate the onward use of images as stereoscopic imagery. For those latter instances files have been marked with stereo-a or stereo-b within the filename to denote where the images form the left of right image for such images. Other images do not contain these additional filename fields to denote when the cameras were used in stand-along mode. Note, due to the nature of coordinating images between the two cameras one was designated as the primary camera from which the settings were then conveyed to the secondary camera by the coordinating software. As a result exact image synchronisation wasn't possible and thus the secondary camera image may have a timestamp that is a second or so later.
-
This dataset contains cloud images from the NCAS Camera 12, one of two identical cameras (designated as ncas-cam-11 and ncas-cam-12), captured at various sites around the Magdalena Mountains, New Mexico, USA, as part of the Deep Convective Microphysics Experiment (DCMEX). DCMEX examined the formation and development of clouds over mountains during July and August 2022. These cameras were designed to take simultaneous images of the same object while placed a distance apart to create a stereo image, but this was not always possible; on some days only one camera was used or the two cameras were deployed in separate locations. The images from this camera were taken during the duration of the DCMEX campaign of clouds from a range of sites. These are accompanied by similar images from a sibling camera (see connected dataset). Where the two cameras were operated at the same site they were synchronised in terms of camera settings (exposure, etc) and camera pointing directions to facilitate the onward use of images as stereoscopic imagery. For those latter instances files have been marked with stereo-a or stereo-b within the filename to denote where the images form the left of right image for such images. Other images do not contain these additional filename fields to denote when the cameras were used in stand-along mode. Note, due to the nature of coordinating images between the two cameras one was designated as the primary camera from which the settings were then conveyed to the secondary camera by the coordinating software. As a result exact image synchronisation wasn't possible and thus the secondary camera image may have a timestamp that is a second or so later.