Keyword

ATMOSPHERICTEMPERATURE

30 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 30
  • These data consist of sets of 3-dimensional gridpoint analyses of the stratosphere which are produced by the Met Office using data from the TIROS Operational Vertical Sounder (TOVS) instruments onboard the NOAA (National Ocean and Atmospheric Administration) operational polar orbiters. TOVS consists of 3 instruments, the Stratospheric Sounding Unit (SSU) the Microwave Sounding Unit (MSU) and the High Resolution Infrared Sounder (HIRS). Daily radiance and geopotential height data are available on a 5 degree latitude / longitude global grid from December 1978 to April 1997. Software is provided to derive potential vorticity. Access permission required so that PI can monitor usage of data.

  • The Airborne Arctic Stratospheric Expedition II (AASE II) which was based in Bangor, Maine between October 1991 and March 1992, with ER-2 flights from Ames Research Center, Fairbanks (Alaska), and Bangor; and DC-8 flights from Ames, Bangor, Anchorage (Alaska), Stavanger (Norway), and Tahiti, was a follow-up to an earlier AASE campaign in 1989. The dataset consists of measurements collected onboard the NASA ER-2 and DC-8 aircraft (for example, ClO, BrO, HCl, O3, NOx, N2O, HNO3, whole air samples and aerosol measurements). In addition, there are ozonesonde soundings from six Canadian stations, global grid point values of Nimbus 7 TOMS ozone, and selected radiosonde soundings from stations in the region of the experiment. Theory teams provided calculations of potential vorticity, temperature, geopotential, horizontal winds, parcel back trajectories, and concentrations of short lived species along the aircraft flight tracks; and northern hemispheric analyses of potential vorticity, temperature, geopotential, horizontal winds, and radiative heating rates.

  • The Airborne Arctic Stratospheric Expedition II (AASE II) which was based in Bangor, Maine between October 1991 and March 1992, with ER-2 flights from Ames Research Center, Fairbanks (Alaska), and Bangor; and DC-8 flights from Ames, Bangor, Anchorage (Alaska), Stavanger (Norway), and Tahiti, was a follow-up to an earlier AASE campaign in 1989. The dataset consists of measurements collected of ozonesonde soundings from six Canadian stations, global grid point values of Nimbus 7 TOMS ozone, and selected radiosonde soundings. Theory teams provided calculations of potential vorticity, temperature, geopotential, horizontal winds, parcel back trajectories, and concentrations of short lived species along the aircraft flight tracks; and northern hemispheric analyses of potential vorticity, temperature, geopotential, horizontal winds, and radiative heating rates.

  • The Airborne Arctic Stratospheric Expedition II (AASE II) which was based in Bangor, Maine between October 1991 and March 1992, with ER-2 flights from Ames Research Center, Fairbanks (Alaska), and Bangor; and DC-8 flights from Ames, Bangor, Anchorage (Alaska), Stavanger (Norway), and Tahiti, was a follow-up to an earlier AASE campaign in 1989. This dataset consists of MODEL data containing 12 Z hemispheric analyses of potential vorticity, temperature, horizontal winds, and radiative heating rates; and one file named MA911006.H00 which contains gas-phase chemistry model reconstructions of several radicals as a function of latitude, altitude, and local time.

  • The Airborne Arctic Stratospheric Expedition II (AASE II) which was based in Bangor, Maine between October 1991 and March 1992, with ER-2 flights from Ames Research Center, Fairbanks (Alaska), and Bangor; and DC-8 flights from Ames, Bangor, Anchorage (Alaska), Stavanger (Norway), and Tahiti, was a follow-up to an earlier AASE campaign in 1989. The dataset consists of measurements collected onboard the NASA ER-2 and DC-8 aircraft (for example, ClO, BrO, HCl, O3, NOx, N2O, HNO3, whole air samples and aerosol measurements). In addition, there are ozonesonde soundings from six Canadian stations, global grid point values of Nimbus 7 TOMS ozone, and selected radiosonde soundings from stations in the region of the experiment. Theory teams provided calculations of potential vorticity, temperature, geopotential, horizontal winds, parcel back trajectories, and concentrations of short lived species along the aircraft flight tracks; and northern hemispheric analyses of potential vorticity, temperature, geopotential, horizontal winds, and radiative heating rates.

  • The Network for the Detection of Atmospheric Composition Change (NDACC), formely known as the Network for the Detection of Stratospheric Change (NDSC), is a set of high quality, remote-sounding research stations for observing and understanding the physical and chemical state of the stratosphere. These stations, where ozone and key ozone-related parameters are measured, are complemented by both secondary stations and satellite measurements. Following five years of planning, instrument design and implementation, the NDACC began network operations in January 1991. The dataset contains high quality measurements of a wide range of stratospheric chemical species and parameters derived from instruments operated at a number of ground stations around the world.

  • The Airborne Arctic Stratospheric Expedition II (AASE II) which was based in Bangor, Maine between October 1991 and March 1992, with ER-2 flights from Ames Research Center, Fairbanks (Alaska), and Bangor; and DC-8 flights from Ames, Bangor, Anchorage (Alaska), Stavanger (Norway), and Tahiti, was a follow-up to an earlier AASE campaign in 1989. The dataset consists of measurements collected onboard the NASA ER-2 and DC-8 aircraft (for example, ClO, BrO, HCl, O3, NOx, N2O, HNO3, whole air samples and aerosol measurements). In addition, there are ozonesonde soundings from six Canadian stations, global grid point values of Nimbus 7 TOMS ozone, and selected radiosonde soundings from stations in the region of the experiment. Theory teams provided calculations of potential vorticity, temperature, geopotential, horizontal winds, parcel back trajectories, and concentrations of short lived species along the aircraft flight tracks; and northern hemispheric analyses of potential vorticity, temperature, geopotential, horizontal winds, and radiative heating rates.

  • The Airborne Arctic Stratospheric Expedition II (AASE II) which was based in Bangor, Maine between October 1991 and March 1992, with ER-2 flights from Ames Research Center, Fairbanks (Alaska), and Bangor; and DC-8 flights from Ames, Bangor, Anchorage (Alaska), Stavanger (Norway), and Tahiti, was a follow-up to an earlier AASE campaign in 1989. The dataset consists of measurements collected onboard the NASA ER-2 and DC-8 aircraft (for example, ClO, BrO, HCl, O3, NOx, N2O, HNO3, whole air samples and aerosol measurements). In addition, there are ozonesonde soundings from six Canadian stations, global grid point values of Nimbus 7 TOMS ozone, and selected radiosonde soundings from stations in the region of the experiment. Theory teams provided calculations of potential vorticity, temperature, geopotential, horizontal winds, parcel back trajectories, and concentrations of short lived species along the aircraft flight tracks; and northern hemispheric analyses of potential vorticity, temperature, geopotential, horizontal winds, and radiative heating rates.

  • The Global Ocean Surface Temperature Atlas Plus (GOSTAplus) contains maps of Sea Surface Temperature (SST) climatologies and anomalies, Night Marine Air temperature climatologies and anomalies and Sea Ice coverage spanning the period 1851-1995. Dataset includes gridded, global SSTs from 1951-1990 and Sea Ice coverage from 1903 to 1994. The data are provided by the Met Office. Updated version of some data also available on request.

  • The GBS (Global Broadcast Service) dataset is a series of radio attenuation measurements made at three sites in the UK: Chilbolton and Sparsholt, both in southern UK, and Dundee in Scotland. The aim of the experiment was to make long term measurements of the signal strength received from a 20.7GHz beacon on the US Department of Defense satellite UFO-9 at multiple sites, in order to determine whether the use of site diversity as a fade mitigation technique would be effective. The dataset spans a period of 3 years, from August 2003 to August 2006 with signal attenuation sampled once per second. This dataset is cited in: S. A. Callaghan, J. Waight, J.L.Agnew, C. J. Walden, C.L.Wrench , S. Ventouras “The GBS dataset: measurements of satellite site diversity at 20.7 GHz in the UK”, Geoscience Data Journal, 17 March 2013, DOI: 10.1002/gdj3.2