From 1 - 10 / 195
  • This dataset contains estimations of Arctic sea level anomalies produced by the ESA Sea Level Climate Change Initiative project (Sea_level_cci), based on satellite altimetry from the ENVISAT and SARAL/Altika satellites. It has been produced by Collecte Localisation Satellites (CLS) and the Plymouth Marine Laboratory (PML). The retrieval of sea level in the Arctic sea ice covered region requires specific processing steps of the satellite altimetry measurements. For this dataset, a specific radar waveform classification method has been applied based on a neural network approach, and the waveform retracking is based on a new adaptive retracking that is able to process both open ocean and peaky echoes measured in leads without introducing any bias between the two types of surfaces. Editing and mapping processing steps have been optimized for this dataset

  • This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from the Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel 3B. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the morning and evening Sentinel 3B equator crossing times which are 10:00 and 22:00 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. SLSTRB achieves full Earth coverage in 1 day so the daily files have gaps where the surface is not covered by the satellite swath during day or night on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 17th November 2018 and ends on 31st December 2020. There are minor interruptions (1-10 days) during satellite/instrument maintenance periods or instrument anomalies. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using the (UoL) LST retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This dataset consists of monthly averaged total column water vapour (TCWV) over land, at a 0.05 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 2.0 chlorophyll-a product (in mg/m3) on a sinusoidal projection at 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Note, the chlorophyll-a data are also included in the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.) Please note, this dataset has been superseded. Later versions of the data are now available.

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 4.0 chlorophyll-a product (in mg/m3) on a geographic projection at 4 km spatial resolution and at number of time resolutions (daily, 5day, 8day and monthly composites). Note, this chlor_a data is also included in the 'All Products' dataset. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.) Please note, this dataset has been superseded. Later versions of the data are now available.

  • These ancillary datasets were used in the production of the "Active", "Passive" and "Combined" soil moisture data products, created as part of the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. The set of ancillary datasets include datasets of Average Vegetation Optical Depth data from AMSR-E, Soil Porosity, Topographic Complexity and Wetland fraction, as well as a Land Mask. This version of the ancillary datasets were used in the production of the v04.2 Soil Moisture CCI data. The "Active" "Passive" and "Combined" soil moisture products which they were used in the development of are fusions of scatterometer and radiometer soil moisture products, derived from the AMI-WS, ASCAT, SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS satellite instruments. To access these products or for further details on them please see their dataset records. Additional reference documents and information relating to them can also be found on the CCI Soil Moisture project website. Soil moisture CCI data should be cited using all three of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos. For further details about these data products please see the linked documentation.

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises Level 2 aerosol products from the ATSR-2 instrument on the ERS-2 satellite, derived using the ADV algorithm, version 2.31. Data are available for the period 1995-2002. For further details about these data products please see the linked documentation.

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from ATSR-2, using the Swansea University (SU) algorithm, version 4.21. For further details about these data products please see the documentation.

  • Part of the European Space Agency's (ESA) Greenhouse Gases (GHG), the XCO2 EMMA product comprises a level 2, column-averaged dry-air mole fraction (mixing ratio) for carbon dioxide (CO2). The product has been produced by applying the ensemble median algorithm EMMA to level 2 data of 7 XCO2 retrievals from the Japanese Greenhouse gases Observing Satellite (GOSAT) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board the European Space Agency's environmental research satellite ENVISAT. This is therefore a merged SCIAMACHY and GOSAT XCO2 Level 2 product, primarily used as a comparison tool to assess the level of agreement / disagreement of the various input products (for model-independent global comparison, i.e. for comparisons not restricted to TCCON validation sites and independent of global model data). This version of the product covers 4 years. For further information on the product and the EMMA algorithm please see the EMMA website, the GHG-CCI Data Products webpage or the Product Validation and Intercomparison Report (PVIR) in the documentation section. The GHG-CCI team encourage all users of their products to register with them to receive information on any updates or issues regarding the data products and to receive notification of new product releases. To register, please use the following link: http://www.iup.uni-bremen.de/sciamachy/NIR_NADIR_WFM_DOAS/CRDP_REG/