From 1 - 4 / 4
  • HIRDLS was a mid-infrared limb-scanning radiometer (21 channels from 6.12 to 17.76 µm and provided sounding observations to observe the lower stratosphere with improved sensitivity and accuracy. HIRDLS was carried on the Aura mission, part of the A-train procession of polar orbiting satellites forming part of NASA's Earth Observing System (EOS). This dataset contains level 0 data of the global distributions of temperature, clouds, aerosols, and 10 trace species O3, H2O, CH4, N2O, NO2, HNO3, N2O5, CFC11, CFC12, and ClONO2 in the stratosphere and upper troposphere at high vertical and horizontal resolution in the Earth's atmosphere between about 8 and 100 km, from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument.

  • HIRDLS was a mid-infrared limb-scanning radiometer (21 channels from 6.12 to 17.76 µm and provided sounding observations to observe the lower stratosphere with improved sensitivity and accuracy. HIRDLS was carried on the Aura mission, part of the A-train procession of polar orbiting satellites forming part of NASA's Earth Observing System (EOS). This dataset contains level 2 version 7.00 data of the global distributions of temperature, clouds, aerosols, and 10 trace species O3, H2O, CH4, N2O, NO2, HNO3, N2O5, CFC11, CFC12, and ClONO2 in the stratosphere and upper troposphere at high vertical and horizontal resolution in the Earth's atmosphere between about 8 and 100 km, from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument.

  • HIRDLS was a joint US-UK development effort, with sponsorship by the British National Space Centre and the Natural Environment Research Council in the UK, and by NASA in the US. HIRDLS was an mid-infrared limb-scanning radiometer (21 channels from 6.12 to 17.76 µm and provides sounding observations to observe the lower stratosphere with improved sensitivity and accuracy. HIRDLS was carried on the Aura mission, part of the A-train procession of polar orbiting satellites forming part of NASA's Earth Observing System (EOS). This dataset collection contains data of the global distributions of temperature, clouds, aerosols, and 10 trace species O3, H2O, CH4, N2O, NO2, HNO3, N2O5, CFC11, CFC12, and ClONO2 in the stratosphere and upper troposphere at high vertical and horizontal resolution in the Earth's atmosphere between about 8 and 100 km, from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument. The instrument provides high vertical resolution information despite the fact that the optical beam is partially obstructed between the scan mirror and the aperture, probably by a piece of inner lining material that became detached during launch. HIRDLS science-team members have produced correction algorithms that make use of the partial view of the atmosphere (vertical scans around azimuth angle of 47 degree line of sight to the orbital plane, on the side away from the sun). In spite of this anomaly, HIRDLS has retained most of its scientific capabilities to support the Aura Mission. HIRDLS was carried on the Aura mission, part of NASA's Earth Observing System (EOS). Aura was launched on 15th July 2004 at 11:01:59 a.m. BST from Vandenberg Air Force Base, California.

  • Data from the Synthetic Aperture Radar and Hyperspectral Airborne campaign (SHAC) run by the Natural Environment Research Council (NERC) and the British National Space Centre (BNSC). The campaign intended to provide support for industrial and academic research into earth resource and environmental monitoring. The campaign was managed by NRSC- now Infoterra. Fourteen different locations were flown in May and June 2000 in the campaign (see Fig.1), logistical constraints requiring two aircraft be used to fly the two instruments individually. The campaign involved a large number of researchers from NERC-EPFS and CEH, BAE Systems and InfoTerra on the ground collecting information vital to making best use of the airborne data: simultaneous spectral, sun photometer and GPS measurements and the installation by DERA, now QinetiQ, of corner reflectors to gain geo-coding of the E-SAR data. The outcome was previously unavailable, state-of the art, airborne data of the UK, which informed 11 research projects. The following list details the various SHAC2000 projects flown ScotSHAC campaign in Glen Affric Woodhouse, I., University of Edinburgh Fractional ground cover estimation from hyperspectral radiometry. Davenport, I., University of Reading Radar measurements of wheat crops at the Boxworth site. Quegan, S., University of Sheffield Land Surface Biophysical Parameters from Multi-angular Hyperspectral and SAR data. Lewis, P. , UCL Carbon Offset Verification of Forest Ecosystems. Dawson, T. , University of Oxford Remote Sensing of Leaks from Aqueducts. Malthus, T.,University of Edinburgh Integration of SAR and hyperspectral airborne data for quantitative analysis of estuarine convergent fronts and water quality (ref: BNSC SHAC 99/004). Ferrier, G., University of Hull Synergy of HyMap and digital elevation data for the analysis of upland peat erosion pattern and composition. McMorrow, J., University of Manchester Thetford Forest: Retrieval of biodiversity indicators for temperate forest from remote sensing; and Monks Wood: Quantifying habitat structure and quality for woodland birds. Balzter, H., CEH- NERC Remote sensing of hydrology and vegetation dynamics in the New Forest. Milton, E., University of Southampton Assessing the environmental impact of historical basemetal mining at Parys Mountain, Anglesey, with HyMap data. Lamb, A. and Denniss, A., Infoterra Ltd.