From 1 - 7 / 7
  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 1 took place in July and August 2003 at Writtle College, near Chelmsford, Essex. This dataset contains OH Lifetime measurement at Writtle.

  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 2 took place in April and May 2004 at Weybourne Atmospheric Observatory, on the north Norfolk coast. This dataset contains OH Lifetime measurement Weybourne Atmospheric Observatory.

  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 2 took place in April and May 2004 at Weybourne Atmospheric Observatory, on the north Norfolk coast. This dataset contains OH and HO2 measurement by the Fluorecence Assay Gas Expansion (FAGE) at Weybourne Atmospheric Observatory

  • This dataset contains Laser induced fluorescence (LIF) OH reactivity measurements made at the Institute of Atmospheric Physics land station (IAP), Beijing site during the winter and summer APHH-Beijing campaigns for the Atmospheric Pollution & Human Health in a Chinese Megacity (APHH) programme. The Leeds OH reactivity instrument measures OH reactivity by photolysing ozone at 266 nm to produce OH, decay of OH with ambient air is measured with LIF (laser induced fluorescence) at 308 nm. The results generate a bi-exponential curve and a line of best fit can be used to calculate OH lifetime. The instrument is calibrated by flowing air zero through the instrument. The units for OH reactivity is in s-1. The data has been filtered for instrument instabilities such as pressure, laser power, high background (laser scatter) and laser alignment

  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 1 took place in July and August 2003 at Writtle College, near Chelmsford, Essex. This dataset contains OH and HO2 measurement by the Fluorecence Assay Gas Expansion (FAGE) at Writtle College.

  • This dataset contains Fluorescence Assay Gas Expansion measurements of OH, HO2 and RO2 made at the Institute of Atmospheric Physics land station (IAP), Beijing site during the winter and summer APHH-Beijing campaigns for the Atmospheric Pollution & Human Health in a Chinese Megacity (APHH) programme. The measurements were taken using the FAGE (Fluorescence Assay by Gas Expansion) technique which is a LIF (laser induced fluorescence) that measures on-resonance fluorescence at 308 nm. HO2 and RO2 are converted to OH via reaction with NO and NO + CO respectively. The instrument is calibrated by photolysis of known concentration of water vapour at 185 nm to generate know concentrations of OH and HO2, same method used for HO2 but NO is injected into the flow to convert HO2 to OH. RO2 is calibrated by photolysing water vapur at 185 nm to generate OH but CH4 is added to convert OH to CH3O2, then CH3O2 is converted to OH using CO and NO. The calibration was preform every three days on campaign, and from this we can convert counts measured into concentration. The units for OH, HO2 and RO2 and there associated errors is molecules cm-3. The data has been filtered for instabilities in data collection including unstable pressure, unstable online, low laser power and not going online correctly. The data has been flagged for when the values were below limit of detection.

  • COBRA (impact of COmbined iodine and Bromine Release on the Arctic atmosphere) is a UK IPY (International Polar Year) consortium that aims to investigate the release mechanisms of iodine in the Arctic and the potential combined effects of iodine and bromine on its atmosphere. The team measured reactive inorganic halogens (BrO, IO, OIO, I2), O3, Hg, HOx, HCHO, NOx, VOCs and reactive halocarbons from temporary laboratories located on the eastern shore of Hudson Bay, north of Kuujjuarapik, during February-March 2008. Met balloons and O3 sondes were launched daily. COBRA set up an ice camp and flux chamber experiments ~500 m into the bay to directly measure halogen emissions and ozone deposition, and measured physical, chemical and biological characteristics of the sea-ice (and potentially of frost flowers) at different depths. The project is linked with OOTI, which carried out a simultaneous field experiment at Kuujjuarapik.