Raman lidar
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
The Convective Storm Initiation Project (CSIP) aimed to further the understanding of the mechanisms responsible for the initiation of precipitating convection in the maritime environment of southern England; i.e. to understand why convective clouds form and develop into precipitating clouds in a particular location. Data have been collected from the 13th June 2005 to the 25th August 2005 by the Ultra-violet Raman lidar at Chilbolton Observatory, Hampshire. The dataset contains measurements of attenuated backscatter coefficients of aerosols within the atmosphere, and humidity mixing ratios. Plots of the attenuated backscatter coefficient, and of the humidity mixing ratios, at different heights are also available.
-
Data have been collected from the 4th of April 2002 to the present by the Ultra-violet Raman lidar at Chilbolton Observatory, Hampshire. The dataset contains measurements of attenuated backscatter coefficients of aerosols within the atmosphere, and humidity mixing ratios. Plots of the attenuated backscatter coefficient, and of the humidity mixing ratios, at different heights are also available.
-
The Convective Storm Initiation Project (CSIP) aimed to further the understanding of the mechanisms responsible for the initiation of precipitating convection in the maritime environment of southern England; i.e. to understand why convective clouds form and develop into precipitating clouds in a particular location. Data have been collected from the 6th July 2004 to the 29th July 2004 by the Ultra-violet Raman lidar at Chilbolton Observatory, Hampshire. The dataset contains measurements of attenuated backscatter coefficients of aerosols within the atmosphere, and humidity mixing ratios. Plots of the attenuated backscatter coefficient, and of the humidity mixing ratios, at different heights are also available.