FRANC: Ensemble member output from UK Met Office Unified Model runs supporting analysis of convective-scale perturbation growth across a spectrum of convective regimes
Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection (FRANC): Ensemble member output from Unified Model runs as described in Flack et al. (2018): Convective-Scale Perturbation Growth Across the Spectrum of Convective Regimes, Monthly Weather Review, 146, 387-405
The dataset contains ensemble run output from 36 hour long runs under different model set ups (see details below) for 6 case studies (see Flack et al. 2018 for greater detail). The case studies (and model output available in the dataset) chosen related to a spectrum of 'convective adjustment time scales', defined as the ratio between the convective available potential energy (CAPE) and its rate of release at the convective scale. 'control' run files contain large scale rainfall rates and amounts whilst the 'control_multilevel' files contain various parameters on various levels, including mean sea level pressure, zonal, meridional and vertical wind components, specific humidity and temperature.
- Case A: 20th April 2012, part of the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) field experiment (Stein et al. 2015), showing typical conditions for scattered showers in the United Kingdom.
- Case B: 12 August 2013, for a case where a surface low was situated over Scandinavia and the Azores high was beginning to build, leading to persistent northwesterly flow.
- Case C: 23rd July 2013, relating to the fifth intensive observation period (IOP 5) of the Convective Precipitation Experiment (COPE; Leon et al. 2016). A low pressure system was centered to the west of the United Kingdom with several fronts ahead of the main center, which later decayed.
- Case D: 2nd August 2013, covering IOP 10 of the COPE field campaign, with convection initiating at 1100 UTC. The synoptic situation shows a low pressure system centered to the west of Scotland, which led to southwesterly winds and a convergence line being set up along the North Cornish coastline (in southwest England).
- Case E: 27th July 2013, covers the period of IOP 7 of the COPE field campaign where two mesoscale convective systems (MCS) influenced the U.K.’s weather throughout the forecast period.
- Case F: 5th August 2013, was chosen for the complex situation for considering convective-scale perturbation grown and a second case driven by the boundary conditions as seen during IOP 12 of the COPE campaign
A brief description of the model run IDs and model setup is given below.
The model used to create these ensembles is the Met Office Unified Model (MetUM). The United Kingdom Variable resolution (UKV) configuration is used, and so the data has a grid spacing of approximately 1.5 km. This was run at version 8.2 and run with the MetUM Graphical User Interface (GUI).
run ID: xkyib
This is the control experiment and everything is kept identical to the operational running of this configuration of the MetUM.
run ID: xldef
Here the Gaussian potential temperature perturbations are added into the model. Full details of the perturbation method are described in Flack et al. (2018) Convective-Scale Perturbation Growth Across the Spectrum of Convective Regimes, Monthly Weather Review, 146, 387-405, however a brief overview is given below:
A Gaussian distribution (defined using random numbers between +/- 1 at each grid point, with the seed determined by the time the model is ran) is created at every grid point in the domain. A superposition is created and rescaled to 0.1 K so as to be an appropriate amplitude for boundary layer noise. Each of the Gaussian distributions have a standard deviation of 9km so as to be added onto an appropriate scale for the model. The perturbations are added in at a model hybrid height of 261.6 m (approximately the 8th model level).
Simple
- Date (Publication)
- 2020-09-11T11:07:46
- Date (Creation)
- 2020-09-11T11:07:46
- Identifier
- Centre for Environmental Data Analysis (CEDA) / b0c3f8b3db16434f80f833aa914e2bd4
- Identifier
- doi / 10.5285/b0c3f8b3db16434f80f833aa914e2bd4
- Maintenance and update frequency
- Not planned
- Update scope
- Dataset
- Keywords
-
- convection
- ensemble runs
- CAPE
- perturbation
- GEMET - INSPIRE themes, version 1.0
-
- atmospheric conditions
- Access constraints
- Other restrictions
- Other constraints
- Public data: access to these data is available to both registered and non-registered users.
- Use constraints
- Other restrictions
- Spatial representation type
- Grid
- Metadata language
- English
- Topic category
-
- Climatology, meteorology, atmosphere
- Begin date
- 2013-04-20T00:00:00
- End date
- 2013-08-13T12:00:00
- Unique resource identifier
- WGS 84
- Distribution format
-
-
Data are PP binary formatted.
()
-
Data are PP binary formatted.
()
- OnLine resource
-
CEDA Data Catalogue Page
Detail and access information for the resource
- OnLine resource
-
DOWNLOAD
Download Data
- Hierarchy level
- Dataset
Conformance result
- Date (Publication)
- 2010-12-08
- Statement
- Data were produced by the project team and supplied for archiving at the Centre for Environmental Data Analysis (CEDA).
- File identifier
- b0c3f8b3db16434f80f833aa914e2bd4 XML
- Metadata language
- English
- Character set
- UTF8
- Parent identifier
- Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection (FRANC): rain radar helical scan data, assimilation versus model residuals and ensemble member model output. 333bf4303034426a857515a768387e4f
- Hierarchy level
- Dataset
- Date stamp
- 2024-11-08T00:20:17
- Metadata standard name
- UK GEMINI
- Metadata standard version
- 2.3