Creation year

2016

334 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 334
  • The data provided here are the numerical simulation data for the multi-decadal experiment (1960 – 2013 inclusive) for the validation of the upgraded Met Office HadGEM3-A based operational event attribution system for EUCLEIA (European Climate and weather Events: Interpretation and Attribution). Improvements include higher horizontal and vertical resolution (N216 L85) and the latest dynamical core (ENDGame) and land surface model (JULES). External forcings are historical natural variability of solar irradiance and volcanic aerosol optical depth as well as historical anthropogenic prescriptions of GHGs, ozone, aerosols and land use change. SST and SIC lower boundary conditions are provided from the HadISST observational dataset. The experiment comprises a 15 member stochastic physics ensemble using kinetic energy backscatter and randomly perturbed physics schemes. All ensemble members share identical initialisation of the atmospheric state from ERA-40 reanalysis at 0000Z December 1st 1959. Atmospheric data are provided at temporal output resolutions of 3-hourly, 6-hourly, daily and monthly; land data are provided at daily and monthly resolutions.

  • This dataset includes the Met Office DePreSys model output prepared for SPECS decadal (1960-2005). These data were prepared by the Met Office Hadley Centre, as part of the SPECS project. Model id is DePreSys3 (DePreSys3: HadGEM3-GC2 N216; atmosphere: UM (GA5.0) ; ocean: NEMO (v3.4, ORCA0.25) ; coupler: OASIS3 (v3.3); sea ice: CICE), frequency is daily and monthly. Daily Atmospheric variables are: pr psl tas Monthly atmos variables: hfls hfss mrso pr psl rls rlut rsdt rss rsut ta tas ua va zg Monthly seaIce variables: sic sit Ocean variables: tos

  • Airborne atmospheric measurements from core and non-core instrument suites data on board the FAAM BAE-146 aircraft collected for ISMAR Test flight: International Sub-Millimetre Airborne Radiometer project.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains O3 outputs from the TOMCAT model. “Chemical attributes” are found by interpolating chemical distributions (in space and time) from a global chemical transport model to the origin of each trajectory (using its full length). During the ICARTT campaign the TOMCAT global CTM is being run in near-real time (about 19 hours behind present) driven by wind analyses from the ECMWF. The back trajectories are sufficiently long that a TOMCAT chemical analysis exists even at the origin of forecast trajectories. For example, the longest forecast lead time for the Azores domain is 5 days but the back trajectories are 7 days long so that the TOMCAT fields dating from 2 days before the latest meteorological analysis are used to find the attributes. For the US East Coast domain the back trajectories are shorter (3 days long) but the longest lead time is also 3 days so that the chemical attributes can be calculated as soon as TOMCAT has been brought up to date with the latest ECMWF analyses.

  • Cloud properties derived from the AATSR instrument on ENVISAT by the ESA Cloud CCI project. The L3C dataset consists of data combined (averaged) from a single instrument into a global space-time grid, with a spatial resolution of 0.5 degrees lat/lon and a temporal resolution of 1 month. This dataset is version 1.0 data from Phase 1 of the CCI project.

  • As part of the ESA Land Cover Climate Change Initiative (CCI) project a set of Global Land Cover Maps have been produced. These are available at 300m spatial resolution for three epochs centred on the year 2010 (2008-2012), 2005 (2003-2007) and 2000 (1998-2002), where each epoch covers a 5-year period. Each pixel value corresponds to the label of a land cover class defined using UN-LCCS classifiers. For each epoch, the land cover map is delivered along with 4 quality flags which document the reliability of the classification. These are described further in the Product User Guides. Further Land Cover CCI products, user tools and a product viewer are available at: http://maps.elie.ucl.ac.be/CCI/viewer/index.php

  • Part of the European Space Agency's (ESA) Greenhouse Gases (GHG) Climate Change Initiative (CCI) project and the Climate Research Data Package Number 3 (CRDP#3), the XCH4 GOS SRPR (Proxy) product comprises a level 2, column-averaged dry-air mole fraction (mixing ratio) for methane (CH4). The product has been produced using data acquired from the Thermal and Near Infrared Sensor for Carbon Observations (TANSO-FTS) NIR and SWIR spectra, onboard the Japanese Greenhouse gases Observing Satellite (GOSAT). This proxy version of the product has been generated using the RemoTeC SRPR algorithm, which is being jointly developed at SRON and KIT. This has been designated as an 'alternative' GHG CCI algorithm, and a separate product has also been generated by applying the baseline GHG CCI proxy algorithm (the University of Leicester OCPR algorithm). It is advised that users who aren't sure whether to use the baseline or alternative product use the OCPR product generated with the baseline algorithm. For more information regarding the differences between the baseline and alternative algorithms please see the GHG-CCI data products webpage. The data product is stored per day in a single NetCDF file. Retrieval results are provided for the individual GOSAT spatial footprints, no averaging having been applied. As well as containing the key product, the product file contains information relevant for the use of the data, such as the vertical layering and averaging kernels. The parameters which are retrieved simultaneously with XCH4 are also included (e.g. surface albedo), in addition to retrieval diagnostics like quality of the fit and retrieval errors. For further details on the product, including the RemoTeC algorithm and the TANSO-FTS instrument, please see the associated product user guide (PUG) or the Algorithm Theoretical Basis Documents in the documentation section. The GHG-CCI team encourage all users of their products to register with them to receive information on any updates or issues regarding the data products and to receive notification of new product releases. To register, please use the following link: http://www.iup.uni-bremen.de/sciamachy/NIR_NADIR_WFM_DOAS/CRDP_REG/

  • Evaluation of the Ozone and Water Vapour Datasets of the 40-Year European Re-analysis of the Global Atmosphere Upper Troposphere Lower Stratosphere (UTLS) Round 2 project led by Prof. A. O Neill, Dr W. Lahoz and Prof. B. Hoskins, Centre for Global Atmospheric Modelling, Department of Meteorology, University of Reading. This dataset contains comparisons between the ERA40 water vapour field output and measurements from the MOZAIC research aircraft instrumentation and the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) instruments on board the Upper Air Research Satellite (UARS).

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains emission tracers from UTRAJ model. “Emissions tracers” are calculated by integrating surface emissions along each trajectory when it is within the boundary layer. The surface emissions are specified using an inventory. During the ITOP campaign the EDGAR inventories for NOx and isoprene emissions are used to indicate trajectories that are likely to have been influenced by anthropogenic or biogenic emissions respectively. The emissions from the surface are assumed to be instantaneously mixed throughout the boundary layer column so that they are equivalent to a volume source within the boundary layer. The boundary layer depth (time and space dependent) is obtained from the same numerical weather prediction model as provides the wind and temperature fields (usually the ECMWF model). Chemistry and dilution by mixing is not modelled along the trajectories, so the values assigned to back trajectories are not intended to represent concentrations on the arrival grid. Both NOx and isoprene have short photochemical lifetimes compared with the length of trajectories used.

  • Airborne atmospheric measurements from core and non-core instrument suites data on board the FAAM BAE-146 aircraft collected for Microwave Emission Validation over sub-Arctic Lake Ice (MEVALI) and Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling (MAMM) as part of the NERC Arctic Research Programme (ARP) projects.