From 1 - 10 / 23
  • This dataset contains ERA5 model level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset. The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  • This dataset contains ensemble spreads for the ERA5 initial release (ERA5t) surface level analysis parameter data ensemble means (see linked dataset). ERA5t is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project initial release available upto 5 days behind the present data. CEDA will maintain a 6 month rolling archive of these data with overlap to the verified ERA5 data - see linked datasets on this record. The ensemble means and spreads are calculated from the ERA5t 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data. The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed and, if required, amended before the full ERA5 release. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record.

  • Data were collected by the Chilbolton Facility for Atmospheric and Radio Research (CFARR) Infra-Red Radiometer from 10th of May 2001 to the present at Chilbolton, Hampshire. The dataset contains measurements for both sky and surface emitted infrared radiation, from 4.5 to 42 µm.

  • The UK mean wind data describes the mean wind speed and direction, and the direction, speed and time of the maximum gust, all during 1 or more hours, ending at the stated time and date. The data is collected by observation stations across the UK and transmitted within the following message types: SYNOP, HCM, AWSHRLY, DLY3208, HWNDAUTO and HWND6910. The data spans from 1949 to present.

  • This dataset contains ERA5 surface level analysis parameter data ensemble means (see linked dataset for spreads). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data. The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  • The global weather observation data contain meteorological values observed at 3-hrly intervals by non-UK stations, as reported in SYNOP and METAR codes. The messages contain measurements of the concrete state, wind speed and direction, cloud type and amount, visibility, temperature, sunshine duration, precipitation amount, and present and past weather. The data span from 1974 to present.

  • A sonic anemometer and a gas analyser measuring water vapour and carbon dioxide are co-located within a compound dedicated to measuring fluxes using the eddy covariance method at Chilbolton Observatory. The eddy covariance technique is an atmospheric measurement method used to calculate vertical turbulent fluxes within the atmospheric boundary layer. This is the lowest region of the troposphere and is usually well mixed, particularly during daylight hours, due to convective heating from the sun. It is this motion in the lower troposphere that makes the technique possible. In order to properly measure the turbulent properties of the atmosphere the measurements must be made at a high frequency - 20 Hz for the Chilbolton Observatory system. A sonic anemometer measures the 3 orthogonal components of the wind velocity by measuring the changes in the time of flight of sonic pulses between 3 transmitter/receiver pairs as a result of the air velocity. A gas analyser measures the absorptance of radiation along a fixed path and uses this to determine the concentration of a gas in air. For each gas the absorptance at 2 wavelengths is measured 152 times per second, one affected by that gas and the other unaffected. There are more accurate instruments available for measuring water vapour and carbon dioxide (e.g. a relative humidity sensor for water vapour) but the benefit of the gas analyser is that it has a sufficiently fast response to resolve the rapid changes in concentration as a result of turbulence.

  • This dataset contains ERA5 surface level analysis parameter data from 10 ensemble runs. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble members were used to derive means and spread data (see linked datasets). Ensemble means and spreads were calculated from the ERA5t 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data. The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  • The UK hourly weather observation data contain meteorological values measured on an hourly time scale. The measurements of the concrete state, wind speed and direction, cloud type and amount, visibility, and temperature were recorded by observation stations across the UK and transmitted within SYNOP, METAR, DLY3208, AWSHRLY and NCM messages. The sunshine duration measurements were transmitted in the HSUN3445 message. The data spans from 1875 to present. This dataset also contains data from a selection of overseas sites: SRC_ID STATION STATUS LAST DATA 1580 GUTERSLOH CLOSED 28/10/2013 13:00 1582 BRUGGEN CLOSED 29/09/2001 05:00 1584 LAARBRUCH CLOSED 14/05/1999 23:00 1585 GIBRALTAR, NORTH FRONT OPEN 03/02/2020 09:00 1588 AKROTIRI, CYPRUS OPEN 03/02/2020 09:00 1603 ASCENSION ISLAND AIRFIELD OPEN 02/02/2020 21:00 1605 BOTTOMS WOOD, ST HELENA OPEN 03/02/2020 09:00 1608 PORT STANLEY, FALKLAND IS CLOSED 31/12/1980 23:00 1609 MOUNT PLEASANT, FALKLAND IS OPEN 03/02/2020 09:00 56810 MOUNT OLYMPUS OPEN 16/04/2019 09:00 61737 MOUNT KENT, FALKLAND ISLANDS OPEN 03/02/2020 09:00 61743 MOUNT BYRON, FALKLAND ISLANDS OPEN 03/02/2020 09:00 61744 MOUNT ALICE, FALKLAND ISLANDS OPEN 02/02/2020 05:00

  • The UK daily rainfall data describe the rainfall accumulation and precipitation amount over a 24 hour period. The data are collected by observation stations across the UK and transmitted within the following message types: WADRAIN, NCM, AWSDLY, DLY3208, SSER and WAMRAIN. The data spans from 1853 to present.