drought
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
This dataset contains high-resolution (5 km) Standardized Precipitation Evaporation Index (SPEI-HR) drought data for Central Asia. There are forty-eight different SPEI time scales and the available period is from 1981 - 2018, the data was produced using Climate Hazards group InfraRed Precipitation with Station’s (CHIRPS) precipitation dataset and Global Land Evaporation Amsterdam Model’s (GLEAM) potential evaporation dataset. The SPEI-HR dataset, over time and space, correlates fairly well with SPEI values estimated from coarse-resolution Climate Research Unit (CRU) dataset. Furthermore, the SPEI-HR dataset, for 6-month timescale, displayed a good correlation of 0.66 with GLEAM root zone soil moisture and a positive correlation of 0.26 with normalized difference vegetation index (NDVI) from Global Inventory Monitoring and Modelling System (GIMMS).
-
This dataset consists of high spatial resolution Standardized Precipitation-Evapotranspiration Index (SPEI) drought dataset over the whole Africa at different time scales from 1 month to 48 months. It is calculated based on precipitation estimates from the satellite-based Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) and potential evaporation estimates by the Global Land Evaporation Amsterdam Model (GLEAM). The SPEI dataset covers the whole of the African continent for a 36-year-long period (1981–2016) at a horizontal resolution of 5 km (0.05 deg) and a monthly time resolution. The dataset is provided in NetCDF format with in a Geographic Lat/Lon projection. Due to the lower reliability of SPEI over areas with low hydro-climatic variability, the areas with barren or sparsely vegetated areas in Africa were masked out based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface type product (MCD12Q1).
-
Data for Figure SPM.6 from the Summary for Policymakers (SPM) of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure SPM.6 shows projected changes in the intensity and frequency of extreme temperature, extreme precipitation and droughts. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has four panels, with data provided for all panels in subdirectories named panel_a, panel_b, panel_c and panel_d. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains: - Changes in annual maximum temperature (TXx) extremes for intensity (°C) and frequency (-) for 1 in 10 year and 1 in 50 year events (relative to 1850-1900) - Changes in annual maximum 1-day precipitation (Rx1day) extremes for intensity (%) and frequency (-) for 1 in 10 year events (relative to 1850-1900) - Changes in soil moisture-based drought events for intensity (standard deviation) and frequency (-) for 1 in 10 year events (relative to 1850-1900) --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - Data file: panel_a/TXx_freq_change_10_year_event.csv ('Hot temperature extremes') [column 2 dark dots, columns 5 and 6 light dots] - Data file: panel_a/TXx_intens_change_10_year_event.csv ('Hot temperature extremes') [column 2 dark bars, columns 5 and 6 light bars] Panel b: - Data file: panel_b/TXx_freq_change_50_year_event.csv ('Hot temperature extremes') [column 2 dark dots, columns 5 and 6 light dots] - Data file: panel_b/TXx_intens_change_50_year_event.csv ('Hot temperature extremes') [column 2 dark bars, columns 5 and 6 light bars] Panel c: - Data file: panel_c/Rx1day_freq_change_10_year_event.csv ('Extreme precipitation over land') [column 2 dark dots, columns 5 and 6 light dots] - Data file: panel_c/Rx1day_intens_change_10_year_event.csv ('Extreme precipitation over land') [column 2 dark bars, columns 5 and 6 light bars] Panel d: - Data file: panel_d/drought_freq_change_10_year_event.csv ('Drought') [column 2 dark dots, columns 5 and 6 light dots] - Data file: panel_d/drought_intens_change_10_year_event.csv ('Drought') [column 2 dark bars, columns 5 and 6 light bars] --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- - The 50th, 5th, and 95th percentiles are shown on the figure (lines on the bars). - The drought intensity shows 'drying' while the data file shows the change in soil moisture (i.e., a negative soil moisture change corresponds to a positive drying signal). --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblink is provided in the Related Documents section of this catalogue record: - - Link to the report webpage, which includes the report component containing the figure (Summary for Policymakers) and the Supplementary Material for Chapter 11, which contains details on the input data used in Table 11.SM.9. (Figures 11.15, 11.6, 11.7, 11.12, and 11.18)